Matemáticas, pregunta formulada por valegbgobu, hace 7 meses

x - 7 = -3

5x = 125

6x + 12 = 36

14x - 20 = 50

3/4x - ⅝ = 7/ 16

2x +4 = -4x + 22

-0.7x +2 = -4.2x - 1.5

5x + 2 = 2x - 2

7x +2 = 3x + 4

3/2x + 1 = 0.5x + 2

Respuestas a la pregunta

Contestado por alejandragiler3
1

Respuesta:

En matemáticas, la derivada parcial de una función de varias variables es la derivada con respecto a cada una de esas variables manteniendo las otras como constantes. Las derivadas parciales son usadas en cálculo vectorial y geometría diferencial.

La derivada parcial de una función {\displaystyle f(x,y,\dots )}{\displaystyle f(x,y,\dots )} con respecto a la variable {\displaystyle x}x se puede denotar de distintas manera:

{\displaystyle {\frac {\partial f}{\partial x}},{\frac {\partial }{\partial x}}f,D_{1}f,\partial _{x}f,f_{x}^{\prime }{\text{ o }}f_{x}.}{\displaystyle {\frac {\partial f}{\partial x}},{\frac {\partial }{\partial x}}f,D_{1}f,\partial _{x}f,f_{x}^{\prime }{\text{ o }}f_{x}.}

Donde {\displaystyle \partial }\partial es la letra 'd' redondeada, conocida como la 'd de Jacobi'. También se puede representar como {\displaystyle D_{1}f(x_{1},x_{2},\cdots ,x_{n})}{\displaystyle D_{1}f(x_{1},x_{2},\cdots ,x_{n})} que es la primera derivada respecto a la variable {\displaystyle x_{1}}{\displaystyle x_{1}} y así sucesivamente.1​

Explicación paso a paso:

Otras preguntas