usando la definición de pendiente para cada ejercicio, demuestra que los puntos del conjunto dado coloniales
a)A(1,5) ,B(2,2) y C(3,-1)
c)P(-5,-1) ,Q(0,-3) y R(5,-4)
e)A(-1,-14), B(2,11) y C(0,-5)
ayuda porfavor
Respuestas a la pregunta
Respuesta:
Explicación paso a paso:
a)A(1,5) ,B(2,2) y C(3,-1)
A(1,5) ,B(2,2) x1= 1 y1=5 x2= 2 y2=2
pendienteAB mAB=(y2-y1) / (x2- x1)
mAB= ( 2 - 5) / (2 - 1)
mAB= -3/1 mAB=-3
B(2,2) y C(3,-1) x1= 2 y1=2 x2= 3 y2=-1
pendienteBC mBC=(y2-y1) / (x2- x1)
mBC= ( -1 - 2) / (3 - 2)
mBC= -3/1 mBC=-3
A(1,5) C(3,-1) x1= 1 y1=5 x2= 3 y2=-1
pendienteAC mAC= (y2-y1) / (x2- x1)
mAC= ( -1 - 5) / ( 3- 1)
mAC= -6/2 mAC=-3
A(1,5) ,B(2,2) y C(3,-1) SON COLINEALES TIENEN LA MISMA PENDIENTE
-------------------------------------------------------------------------------------
c)P(-5,-1) ,Q(0,-3) y R(5,-4)
P(-5,-1) ,Q(0,-3) x1= -5 y1=-1 x2= 0 y2= -3
pendientePQ mPQ= (y2-y1) / (x2- x1)
mPQ= ( -3 + 1) / ( 0 + 5)
mPQ= -2/5 mPQ=-2/5
Q(0,-3) y R(5,-4) x1= 0 y1=-3 x2= 5 y2= -4
pendienteQR mQR= (y2-y1) / (x2- x1)
mQR= ( -4 + 3) / ( 5 + 0)
mQR= -1/5 mPQ=-1/5
P(-5,-1) ,y R(5,-4) x1= -5 y1= -1 x2= 5 y2= -4
pendientePR mPR= (y2-y1) / (x2- x1)
mPR= ( -4 + 1) / ( 5 + 5)
mPR= -3/10 mPR= -3/10
P(-5,-1) ,Q(0,-3) y R(5,-4) NO SON COLINEALES LA PENDIENTE ES DIFERENTE
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::.
e)A(-1,-14), B(2,11) y C(0,-5)
A(-1,-14), B(2,11) x1= -1 y1=-14 x2= 2 y2= 11
pendienteAB mAB=(y2-y1) / (x2- x1)
mAB= ( 11 + 14) / (2 + 1)
mAB= 25/3 mAB=25/3
B(2,11) y C(0,-5) x1= 2 y1= 11 x2= 0 y2= -5
pendienteBC mBC=(y2-y1) / (x2- x1)
mBC= ( -5 - 11) / (0 - 2)
mBC= -16/-2 mBC= 8
A(-1,-14), C(0,-5) x1= -1 y1= -14 x2= 0 y2= -5
pendienteAC mAC= (y2-y1) / (x2- x1)
mBC= ( -5 +14) / ( 0 + 1)
mAC= 9/1 mAC= 9
A(-1,-14), B(2,11) y C(0,-5) NO SON COLINEALES LA PENDIENTE ES DIFERENTE