Matemáticas, pregunta formulada por ericmartinez8937, hace 2 meses

Una persona ubicada en un punto A eleva su mirada 30° para ver un punto B en lo alto de un edificio. Luego camina 25 metros hasta un punto C y eleva nuevamente su mirada 60° para ver el mismo punto B. La distancia entre el punto A y el B es de:.

Respuestas a la pregunta

Contestado por carbajalhelen
1

La distancia entre el punto A y el punto B es de:

12.5 metros

Los puntos A, B y C forman dos triángulos rectángulos;

Aplicar trigonometria;

Tan(α) = Cat. Op/Cat. Ady

Siendo;

  • α = 60° ∧  30°
  • Cat. Op = h
  • Cat. Ady = x + 25   ∧  x

Sustituir;

Tan(60°) = h/x

Despejar h;

h = x Tan(60°)

Tan(30°) = h/(x + 25)

Despejar h;

h = (x + 25) Tan(30°)

Igualar h;

x Tan(60°) = (x + 25) Tan(30°)

x Tan(60°) = x  Tan(30°) + 25  Tan(30°)

Despejar x;

x( Tan(60°) -  Tan(30°)) = 25 Tan(30°)

x = 25 Tan(30°)/( Tan(60°) -  Tan(30°))

x = 25/2

x = 12.5 metros

Adjuntos:
Otras preguntas