Un granjero desea delimitar una parcela rectangular de área 196m2, Si la cerca tiene un costo de $20 el metro.
a. ¿Cuál debe ser la magnitud del lado x de la parcela de modo que se minimice el costo del cercado?
b. ¿Cuál será el costo de cercar la parcela?
Respuestas a la pregunta
Contestado por
1
Respuesta:
Explicación paso a paso:
Área de un rectángulo:
A = x*y
900m² = x*y
y = 900/x
Perímetro de un rectángulo:
P = 2x+2y
P = 2x+2(900)/x
P = (2x²+ 1800)/x
Las dimensiones del ancho y largo que hacen que el perímetro o cercado sea máxima.
Derivamos la función objetivo:
P`= (2x²-1800) /x²
Igualamos a cero
0 = 2x²-1800
x = √1800/2
x= 30 m
y = 30m
La cerca tiene un costo de $15 por metro:
Perímetro:
P = 2(30+30)
P = 120m
Costo₁ = 120*$15 = $1800
¿Cómo cambia su respuesta si el costo de cercado sube a $20 por metro?
Costo₂ = 120*$35 =$4200
Contestado por
3
Respuesta:
el costo es $3920
Explicación paso a paso:
Otras preguntas