Matemáticas, pregunta formulada por Narel14, hace 6 meses


8  {x}^{2}  - x = 0 \\  \\ 2. {x }^{2}  - 6x = 0
Resuelve y verifica
Ayuda por favor se los pido :( doy corona a quien me ayude por favor ​

Respuestas a la pregunta

Contestado por LuisVerSi
1

Explicación paso a paso:

Hallemos las raices de las cuadráticas.

8 {x}^{2}  - x = 0 \\  \\ 8( {x}^{2}  -  \frac{x}{8} ) = 0 \\  \\ 8( {x}^{2}  -  \frac{x}{8}  +  \frac{1}{256}  -  \frac{1}{256})  = 0 \\  \\ 8 ({(x -  \frac{1}{16} )}^{2}  -  \frac{1}{256} ) = 0 \\  \\ 8 {(x -  \frac{1}{16} )}^{2}  -  \frac{8}{256} =  0  \\  \\  8{(x -  \frac{1}{16} )}^{2}  -  \frac{1}{32} =  0  \\  \\ 8 {(x -  \frac{1}{16} }^{2}  ) =  \frac{1}{32} \\  \\ {(x -  \frac{1}{16} )}^{2} =  \frac{1}{256}   \\  \\   \sqrt{ {(x -  \frac{1}{16} )}^{2}}  =  \sqrt{ \frac{1}{256} }  \\  \\ x -  \frac{1}{16}  =  \frac{ + }{} \frac{1}{16 }  \\  \\ x =  \frac{ + }{} \frac{1}{16 }  +  \frac{1}{16}  \\  \\ x_{1} =    \frac{1}{16}  +  \frac{1}{16}  =  \frac{2}{16}  \\  \\ x_{2} =  -  \frac{1}{16}  +  \frac{1}{16}  = 0

Verificación:

x_{2} = 0 \\  \\  8 \times  {(0)}^{2}  + (0) =  \\ 0 + 0 = \\  0 \\  \\ x_{1} = \frac{2}{16}  \\  \\ 8 \:  {( \frac{2}{16} )}^{2}  -  \frac{ 2 }{16}  =  \\  \\  8(\frac{4}{256} ) -  \frac{2}{16}  =  \\  \\  \frac{32}{256}  -  \frac{2}{16}  =  \\  \\  \frac{2}{16}  -  \frac{2}{16}  = 0 \\ \\ \\

 {x}^{2}  - 6x = 0 \\  \\  {x }^{2}   - 6x+ 9 - 9 = 0 \\  \\  {(x - 3)}^{2}  - 9 = 0 \\  \\  {(x - 3)}^{2}  = 9 \\  \\  \sqrt{{(x - 3)}^{2} }  =  \sqrt{9}  \\  \\ x  -  3 =  \frac{ + }{} 3 \\  \\ x =  \frac{ + }{} 3  +  3 \\  \\ x_{1} = 3 + 3 = 6 \\  \\ x_{2} =  - 3 + 3 = 0

Verificación:

x_{1} = 6 \\  \\  {(6)}^{2}  - 6(6) =  \\ 36 - 36 = \\ 0 \\  \\  \\ x_{2} = 0 \\  \\  {(0)}^{2}  - 6(0) =  \\ 0 + 0 = \\ 0

Otras preguntas