Resuelve los siguientes ejercicios de productos notables (6x+1)^2 (5a^3-11b^4)^2 (4×^2-3x+2)^2 (5a^2+3a+5)^2 (2×^2y^2+2)(2×^3y^2-2)
Respuestas a la pregunta
Contestado por
2
(6x + 1)² = (6x)² + 2(6x)(1) + (1)²
= 36x² + 12x + 1
(5a³ - 11b⁴)² = (5a³)² - 2(5a³)(11b⁴) + (11b⁴)²
= 25a⁶ - 110a³b⁴ + 121b⁸
(4x²-3x+2)² = (4x²)²+(-3x)²+(2)²+2(4x²)(-3x)+2(4x²)(2)+2(-3x)(2)
= 16x⁴+9x²+4-24x³+16x²-12x
= 16x⁴+24x³+25x²-12x+4
(5a²+3a+5)² = (5a²)²+(3a)²+(5)²+2(5a²)(3a)+2(5a²)(5)+2(3a)(5)
= 25a⁴+9a²+25+30a³+50a²+30a
= 25a⁴+30a³+59a²+30a+25
(2x²y² + 2)(2x²y² - 2) = (4x⁴y⁴ - 4)
= 4(x⁴y⁴ - 1)
(2x²y²+2)(2x³y²-2) = 2(x²y²+1)*2(x³y²-1)
= 4(x²y²+1)(x³y²-1)
= 4(x⁵y⁴+x³y²-x²y²-1)
Otras preguntas