) Resolver los siguientes sistemas de ecuaciones, empleando el método analítico algebraico que gustes en cada caso (sustitución, igualación, reducción, determinantes, etc.), solo se te solicita que emplees al menos dos métodos diferentes, a lo largo de este primer ejercicio.
5x+y=22
x-y=2
Respuestas a la pregunta
Respuesta:
Explicación paso a paso:
5x + y = 22 (1)
x - y = 2 (2)
Sustitución:
Resuelve la ecuación para (1) despejando la variable y:
5x + y = 22 /Restas 5x a ambos miembros de la igualdad.
y = 22 - 5x (3)
Sustituye y en la ecuación (2) y resuelve para x:
x - (22 - 5x) = 2 / Distribuye el signo -
x - 22 + 5x = 2 / Opera para x
6x - 22 = 2 / Suma 22 a ambos miembros
6x = 24 / Divide ambos miembros por 6
x = 4
Realiza una sustitución en la ecuación (3):
y = 22 - 5 * 4
y = 2
∴ El par ordenado (x , y) = ( 4 , 2 )
Eliminación:
5x + y = 22 (1)
x - y = 2 (2)
Suma las ecuaciones 1 y 2
5x + y + x - y = 22 + 2 /Agrupa términos semejantes
6x = 24 / Divide por 6 ambos miembros
x = 4
Sustituye x en la ecuación (2)
4 - y = 2 / Resta 4 ambos miembros
y = 2
∴ El par ordenado (x , y) = ( 4 , 2 )