Matemáticas, pregunta formulada por anatrejo7924, hace 6 meses

resolver la integral ∫4(6+2x²)⁴dx​

Respuestas a la pregunta

Contestado por alvaropic2
0

Respuesta:

\int \:4\left(6+2x^2\right)^4dx\\

\mathrm{Sacar\:la\:constante}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx

=4\cdot \int \left(6+2x^2\right)^4dx

Expandir}\:\left(6+2x^2\right)^4:\quad1296+1728x^2+864x^4+192x^6+16x^8$

=4\cdot \int \:1296+1728x^2+864x^4+192x^6+16x^8dx

\mathrm{Aplicar\:la\:regla\:de\:la\:suma}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx

=4\left(\int \:1296dx+\int \:1728x^2dx+\int \:864x^4dx+\int \:192x^6dx+\int \:16x^8dx\right)

$\int\:1296dx=1296x$

$\int\:1728x^2dx=576x^3$

$\int\:864x^4dx=\frac{864x^5}{5}$

$\int\:192x^6dx=\frac{192x^7}{7}$

$\int\:16x^8dx=\frac{16x^9}{9}$

=4\left(1296x+576x^3+\frac{864x^5}{5}+\frac{192x^7}{7}+\frac{16x^9}{9}\right)

RESULTADO:

=4\left(1296x+576x^3+\frac{864x^5}{5}+\frac{192x^7}{7}+\frac{16x^9}{9}\right)+C

Espero haberte ayudado :D

Otras preguntas