Matemáticas, pregunta formulada por renataanculle, hace 2 meses

Obtener la pendiente de una recta que pasa por los puntos A(-4; -3) y B(5; 8)

Respuestas a la pregunta

Contestado por Enveruwu
0

Rpta: La pendiente de la primera recta es 1,22

                                               \boldsymbol{\mathsf{Procedimiento}}

Debemos recordar que la pendiente de la recta es inclinación de la recta con respecto al eje de abscisas puede ser calculada de la siguente forma conociendo los dos puntos de las coordenadas

                                               \begin{gathered}\boxed{\mathsf{m=\frac{y_{2} - y_{1} }{x_{2} - x_{1}}} }\end{gathered}

Hallamos la pendiente de la recta con los puntos A(-4,-3) y B(5,8)

Primero identificamos los coordenadas

\blacktriangleright{\mathsf{A=(\underbrace{-4}_{x_{1}} \ , \ \underbrace{-3}_{y_{1}})}

\blacktriangleright{\mathsf{B=(\underbrace{5}_{x_{2}} \ , \ \underbrace{8}_{y_{2}})}

Ahora hallamos la pendiente "m"

\begin{gathered}{\mathsf{m=\frac{8 - (-3) }{5 - (-4)}=\frac{11}{9} = 1,22 }\end{gathered}   ✔

Atentamente: Enver

Otras preguntas