La educación y la cortesia abren todas las puertas" 1 Calcular la hipotenusa del triángulo rectangulo sabiendo que sus lados miden 4 y 3 cm
Respuestas a la pregunta
Respuesta:
1. ¿Es posible construir un triángulo rectángulo de 10 cm y 6 cm de medida de sus catetos y 15 cm de hipotenusa? Razo- na tu respuesta
2. Dibuja en papel cuadriculado en tu cuaderno un triángulo rectángulo cuyos catetos midan 3 y 4 cuadritos. Dibuja luego otro triángulo rectángulo de catetos 6 y 8 cuadritos. Mide las dos hipotenusas y anota los resultados. ¿Es la medida de la segunda hipotenusa doble que la de la primera? Razona la respuesta. Calcula las áreas formadas por los cuadrados construidos sobre los catetos y la hipotenusa.
3. Dibuja un triángulo que no sea rectángulo, que sea acutángulo y comprueba que no verifica el teorema de Pitágoras. Dibuja ahora uno que sea obtusángulo, y de nuevo comprueba que no lo verifica. Razona la respuesta.
4. ¿Cuánto mide la diagonal de un rectángulo de dimensiones 8,2 cm y 6,9 cm?
5. Calcula la longitud de la hipotenusa de los siguientes triángulos rectángulos de catetos:
a) 16 cm y 12 cm b) 40 m y 30 m c) 5 dm y 9,4 dm d) 2,9 km y 6,3 km.
6. Calcula la longitud del cateto que falta en los siguientes triángulos rectángulos de hipotenusa y cateto:
a) 25 cm y 15 cm b) 35 m y 21 m c) 42 dm y 25 dm d) 6,1 km y 4,2 km 7. Calcula la longitud de la diagonal de un cuadrado de lado 8 m.
8. Calcula la medida de la hipotenusa de un triángulo rectángulo cuyos catetos miden 12 cm y 5 cm
9. Un triángulo rectángulo tiene un cateto de 6 cm y la hipotenusa de 10 cm. ¿Cuál es su perímetro? ¿Y su área? Semejanza
10. Indica si son semejantes los siguientes pares de triángulos:
a) Un ángulo de 30º y otro de 20º. Un ángulo de 120º y otro de 20º.
b) Triángulo isósceles con ángulo desigual de 80º. Triángulo isósceles con un ángulo igual de 50º. c) A = 40º, b = 8 cm, c = 12 cm. A’= 40º, b’ = 4 cm, c’ = 6 cm
d) a = 3 cm, b = 4 cm, c = 6 cm. a’ = 12 cm, b’ = 16 cm, c’ = 24 cm
11. Calcula el valor desconocido para que los triángulos sean semejantes: a) a = 15 cm, b = 9 cm, c = 12 cm. a' = 10 cm, b' = 4 cm, ¿c'? b) A = 50º, b = 3 cm, c = 7 cm. A’ = 50º, b' = 18 cm, ¿a'?
12. Las longitudes de los lados de un triángulo son 12 cm, 14 cm y 14 cm. Un triángulo semejante a él tiene un perímetro de 80 cm. ¿Cuánto miden sus lados?
13. Dibuja en tu cuaderno un pentágono regular. Traza sus diagonales. El triángulo formado por un lado del pentágono y las dos diagonales del vértice opuesto se denomina triángulo áureo, pues al dividir el lado mayo entre el menor se obtiene el número de oro, ¿cuánto miden sus ángulos? Busca en la figura que has trazado otros triángulos áureos. ¿Cuál es la relación de proporcionalidad?
14. ¿Cuánto es la suma de los ángulos interiores de un rombo?
15. La sombra de un edificio mide 15 m, y la del primer piso 2 m. Sabemos que la altura de ese primer piso es de 3 m, ¿cuánto mide el edificio?
16. En el museo de Bagdad se conserva una tablilla en la que aparece dibujado un triángulo rectángulo ABC, de lados a = 60, b = 45 y c= 75, subdividido en 4 triángulos rectángulos menores ACD, CDE, DEF y EFB, y el escriba calcula la longitud del lado AD como 27. ¿Ha utilizado la semejanza de triángulos? ¿Cómo se podría calcular? ¿Qué datos necesitas? Calcula el área del triángulo ABC y del triángulo ACD. Determina la longitud de los segmentos CD, DE y EF.
17. Un triángulo rectángulo isósceles tiene un cateto de longitud 20 cm, igual a
la hipotenusa de otro triángulo semejante al primero. ¿Cuánto valen las áreas de ambos triángulos?
18. El mapa a escala 1:5000000 de un pueblo tiene un área de 700 cm2, ¿cuánto mide la superficie verdadera de dicho
pueblo?
19. Uniendo los puntos medios de los lados de un triángulo se obtiene otro triángulo. ¿Cómo son? ¿Qué relación hay entre sus perímetros? ¿Y entre sus áreas?
20. La altura y la base de un triángulo rectángulo miden respectivamente 6 y 15 cm; y es semejante a otro de base 30 cm. Calcula la altura del nuevo triángulo y las áreas de ambos.
21. Calcular el área de un pentágono regular de 4 cm de lado y 3,4 cm de radio.
22. Calcula la longitud de la hipotenusa de los siguientes triángulos rectángulos de catetos: a) 4 cm y 3 cm b) 8 m y 6 m
c) 3 dm y 7 dm d) 27,3 km y 35,8 km.
23. Calcula la longitud del cateto que falta en los siguientes triángulos rectángulos de hipotenusa y cateto: b) 5 cm y 3 cm b) 10 m y 6 m
c) 25 dm y 10 dm d) 34,7 km y 12,5 km
24. Calcula el área de un triángulo equilátero de lado 8 m. Ayuda: Utiliza el teorema de Pitágoras para calcular la altura. 25. Calcula el área de un hexágono regular de lado 7 cm. Ayuda: Utiliza el teorema de Pitágoras para calcular su apotema. 26. Calcula el volumen de un tetraedro regular de lado 3 dm.
27. Calcula la longitud de la diagonal de un rectángulo de base 6 cm y altura 4 cm.
Explicación paso a paso: