Matemáticas, pregunta formulada por davidaguilarseb, hace 1 año

La ecuación de movimiento de un cohete es h(t)=15/2tcuadrado +5t +1 en donde h esta en hectómetros y t en segundos. Encontrar la velocidad instantánea para cualquier instante t; v(t)= h'(t). Calcular la altura alcanzada en 3 segundos, la velocidad en 2 y 10 segundos

Respuestas a la pregunta

Contestado por GuerreroZ48
0

Reúne valores para la velocidad y tiempo de lanzamiento, así como la constante de la gravedad (9,8 m/s^2). En la mayoría de los problemas de física, estos valores serán provistos.

Inserta los valores del Paso 1 en las dos ecuaciones de movimiento para una trayectoria vertical: Vy = Voy -gt y y = Voyt-(1/2)gt^2. En esta ecuación, Vy es la velocidad, Voy es la velocidad del lanzamiento, ya sea en metros por segundo o pies por segundo, y es equivalente a la altura alcanzada, t es equivalente al tiempo en segundos y g es la constante de la gravedad mencionada arriba (9,8 m/s^2). Si la velocidad del lanzamiento es en pies por segundo, entonces utiliza la conversión para g, que es 32,15 pies/s^2.

Calcula tanto la velocidad como la altura utilizando las dos ecuaciones en el Paso 2. Por ejemplo, si mi velocidad de lanzamiento fue de 500 m/s y mi tiempo fue de 25 segundos, cuando se colocan en ambas ecuaciones, el resultado será una velocidad de 254,75 m/s y una altura de 9434,375 metros.

Sigue el trabajo para las respuestas en el Paso 3:

Vy = Voy - gt Vy = (500) - (9,81)(25) Vy = 254,75 m/s

y = Voyt-(1/2)gt^2 y = (500)(25)-((1/2)(9,81)(25)^2) y = 12500 - 3065,625 y = 9434,375 metros

Otras preguntas