Matemáticas, pregunta formulada por Any1519, hace 1 año

Halla el eje de simetria y las coordenadas del vertice de cada una de las siguientes parabolas sin representarlas graficamente
a. y= 2x^2+4x-6
b. y= -x^2-8x+9
c. y= -2x^+x
d. y= x^+8x+15

Respuestas a la pregunta

Contestado por LuffyPeru
189
Halla el eje de simetría y las coordenadas del vértice de cada una de las siguientes parábolas sin representarlas gráficamente
a. y= 2x^2+4x-6
y = 0

2x^2+4x-6=0
\mathrm{Para\:}\quad a=2,\:b=4,\:c=-6:\quad x_{1,\:2}=\frac{-4\pm \sqrt{4^2-4\cdot \:2\left(-6\right)}}{2\cdot \:2}
x_{1}=\frac{-4+\sqrt{4^2-4\cdot \:2\left(-6\right)}}{2\cdot \:2}=\quad 1
x_{2}=\frac{-4-\sqrt{4^2-4\cdot \:2\left(-6\right)}}{2\cdot \:2}=\quad -3
\left(1,\:0\right),\:\left(-3,\:0\right)
x=0

\:y=2\cdot \:0^2+4\cdot \:0-6:\quad y=-6
\mathrm{X\:intersecta}:\:\left(1,\:0\right),\:\left(-3,\:0\right),\:\mathrm{Y\:intersecta}:\:\left(0,\:-6\right)
\mathrm{Para\:una\:parabola}\:ax^2+bx+c\:\mathrm{las\:x\:del\:vertice\:equivalen\:a}\:\frac{-b}{2a}

a=2,\:b=4
x=\frac{-4}{2\cdot \:2} = -1

y=2\left(-1\right)^2+4\left(-1\right)-6 = -8
\mathrm{Por\:lo\:tanto,\:el\:vertice\:de\:la\:parabola\:es}

\left(-1,\:-8\right)

b. y= -x^2-8x+9
y = 0

-x^2-8x+9=0
\mathrm{Para\:}\quad a=-1,\:b=-8,\:c=9:\quad x_{1,\:2}=\frac{-\left(-8\right)\pm \sqrt{\left(-8\right)^2-4\left(-1\right)9}}{2\left(-1\right)}
x_{1}=\frac{-\left(-8\right)+\sqrt{\left(-8\right)^2-4\left(-1\right)9}}{2\left(-1\right)}:\quad -9
x_{2}=\frac{-\left(-8\right)-\sqrt{\left(-8\right)^2-4\left(-1\right)9}}{2\left(-1\right)}:\quad 1
\left(-9,\:0\right),\:\left(1,\:0\right)
x=0

y=-0^2-8\cdot \:0+9:\quad y=9
\mathrm{X\:intersecta}:\:\left(-9,\:0\right),\:\left(1,\:0\right),\:\mathrm{Y\:intersecta}:\:\left(0,\:9\right)
Para\:una\:parabola
a=-1,\:b=-8
x=\frac{-\left(-8\right)}{2\left(-1\right)} =-4
y=-\left(-4\right)^2-8\left(-4\right)+9=25

\mathrm{Por\:lo\:tanto,\:el\:vertice\:de\:la\:parabola\:es}


\left(-4,\:25\right)

c. y= -2x^2+x
y=0

-2x^2+x=0
\mathrm{Para\:}\quad a=-2,\:b=1,\:c=0:\quad x_{1,\:2}=\frac{-1\pm \sqrt{1^2-4\left(-2\right)0}}{2\left(-2\right)}
x_{1}=\frac{-1+\sqrt{1^2-4\left(-2\right)0}}{2\left(-2\right)}:\quad 0
x_{2}=\frac{-1-\sqrt{1^2-4\left(-2\right)0}}{2\left(-2\right)}:\quad \frac{1}{2}
\left(0,\:0\right),\:\left(\frac{1}{2},\:0\right)
x=0


\:y=-2\cdot \:0^2+0:\quad y=0
\mathrm{X\:intersecta}:\:\left(0,\:0\right),\:\left(\frac{1}{2},\:0\right),\:\mathrm{Y\:intersecta}:\:\left(0,\:0\right)
Para\:una\:parabola
\:a=-2,\:b=1
x=\frac{-1}{2\left(-2\right)}=\frac{1}{4}
y=-2\left(\frac{1}{4}\right)^2+\frac{1}{4}=\frac{1}{8}

\mathrm{Por\:lo\:tanto,\:el\:vertice\:de\:la\:parabola\:es}

\left(\frac{1}{4},\:\frac{1}{8}\right)

d. y= x^2+8x+15
y=0

x^2+8x+15=0
\mathrm{Para\:}\quad a=1,\:b=8,\:c=15:\quad x_{1,\:2}=\frac{-8\pm \sqrt{8^2-4\cdot \:1\cdot \:15}}{2\cdot \:1}
x_{1}=\frac{-8+\sqrt{8^2-4\cdot \:1\cdot \:15}}{2\cdot \:1}:\quad -3
x_{2}=\frac{-8-\sqrt{8^2-4\cdot \:1\cdot \:15}}{2\cdot \:1}:\quad -5
\left(-3,\:0\right),\:\left(-5,\:0\right)
y=0

\:y=0^2+8\cdot \:0+15:\quad y=15
\mathrm{X\:intersecta}:\:\left(-3,\:0\right),\:\left(-5,\:0\right),\:\mathrm{Y\:intersecta}:\:\left(0,\:15\right)
\mathrm{Para\:una\:parabola} ,\:a=1,\:b=8
x=\frac{-8}{2\cdot \:1}=-4
y=\left(-4\right)^2+8\left(-4\right)+15=-1
\mathrm{Por\:lo\:tanto,\:el\:vertice\:de\:la\:parabola\:es}

\left(-4,\:-1\right)

Otras preguntas