Matemáticas, pregunta formulada por Desjeck, hace 1 año

Ernesto sabe que cuando se coloca a 12 metros de la base del asta de una
bandera, puede observar la parte superior con un ángulo de 16°. Si sus ojos
están a 1,63 metros sobre el piso, ¿a qué altura está la parte superior del asta?

Respuestas a la pregunta

Contestado por paulrada
29
- En la siguiente figura se muestra representado el enunciado del problema.

- Como se representa se forma un triangulo desde la altura de los ojos de Ernesto y la parte superior del asta, por tanto usaremos las relaciones trigonométricas para resolver el problema.

- La hipotenusa del triangulo h, la determinamos utilizando el Coseno del ángulo:

 Cos Ф = Lado adyacente (La)/ hipotenusa (h)  h = La / CosФ 

- El lado adyacente es distancia entre la base del asta y Ernesto = 12 m. el ángulo Ф = 16 °. Por tanto la hipotenusa es;

 h = 12 m / Cos 16° = 12.48 m

- Conocido la hipotenusa, podemos hallar el lado opuesto (Lo), utilizando la relación del senФ: 

SenФ = Lo/ h ⇒ Lo = h x SenФ

Lo =
12.48 m x Sen 16° = 3.44 m

- Por tanto, la altura de la parte superior del asta (h asta) desde el suelo será:

 h asta = 1.63 m + 3.44 m 
h asta = 5.07 m

Adjuntos:
Otras preguntas