en un monedero hay 64 monedas con un valor de 1000 pesos. si las monedas son de 5 y de 25 pesos ¿ cuantas hay de cada clase
Respuestas a la pregunta
Respuesta:
30 monedas de 5 y 34 monedas de 25.
Explicación paso a paso:
Primero definimos variables:
x = monedas de 5
y = monedas de 25
Del enunciado "hay 64 monedas" podemos deducir que sumando x y y vamos a tener un total de 64.
x + y = 64
Del enunciado "con un valor de 1000" podemos decir que multiplicando cada variable por su valor (para encontrar cuanto vale cada una en vez de su cantidad) y sumándolas, vamos a obtener 1000 pesos.
5x + 25y = 1000
Despejamos x en la primera ecuación
x + y = 64
x = 64 - y
Sustitumos en la sefunda ecuación
5(64 - y) + 25y = 1000
320 - 5y + 25y = 1000
-5y + 25y = 1000 - 320
20y = 680
y = 680/20
y = 34
Ya encontramos que y es igual a 34, que quiere decir que hay 34 monedas de 25. Ahora sustituimos esw calor para encontrar x.
x + y = 64
x + 34 = 64
x = 64 - 34
x = 30
Hay 30 monedas de 5 y 34 monedas de 25.