Física, pregunta formulada por nadianoemisosagarcia, hace 1 mes

¿ El ángulo de lanzamiento de un proyectil, incide en el valor de la altura máxima alcanzada?​

Respuestas a la pregunta

Contestado por yeroskis2020
2

Respuesta:

En el capítulo de Cinemática estudiamos el movimiento de los proyectiles que describen trayectorias parabólicas en el plano horizontal local, suponiendo que la aceleración de la gravedad es constante.

En la página titulada “El descubrimiento de la Ley de la Gravitación Universal”, observamos que un proyectil disparado desde una cierta altura describe una trayectoria elíptica en uno de cuyos focos está el centro de la Tierra. Las trayectorias parabólicas son aproximaciones de trayectorias elípticas, cuando el alcance y la altura máxima del proyectil son muy pequeños en comparación con el radio de la Tierra.

Supondremos también que la Tierra no gira sobre su eje. El efecto de la rotación de la Tierra se describirá en la página titulada “Desviación hacia el este de un cuerpo que cae”.

En esta página, vamos a determinar la trayectoria que sigue el proyectil que es disparado desde una altura h, con velocidad inicial v0 haciendo un ángulo φ con la dirección radial.

A lo largo de esta página, necesitaremos los siguientes datos:

El radio de la Tierra R=6.37·106 m

La masa de la Tierra M=5.98·1024 kg

La constante G=6.67·10-11 Nm2/kg2

 

Ecuación de la trayectoria

Se dispara un proyectil de masa m desde una distancia r0=R+h del centro de la Tierra, con velocidad v0 haciendo un ángulo φ con el radio vector. El momento angular y la energía del proyectil son, respectivamente

 

La ecuación de la trayectoria en coordenadas polares es

Si la energía del proyectil es negativa E<0 su trayectoria es una elipse, su excentricidad ε<1.

Conocido d y ε,  se calcula el semieje mayor a, que es la media aritmética de los radios mínimo (θ=0)  y máximo (θ=π) de la elipse.

La semidistancia focal, c=ε·a

El semieje menor b de la elipse  

Velocidad del proyectil en el punto de impacto

Como la energía es constante en todos los puntos de la trayectoria, la velocidad v con la que impacta el proyectil en la superficie de la Tierra es independiente de la masa m del proyectil y del ángulo de disparo. Se obtiene poniendo r=R (radio de la Tierra) en la ecuación de la energía, y despejando la incógnita v

Tiempo de vuelo

Para calcular el tiempo de vuelo, vamos a utilizar el mismo procedimiento que empleamos para deducir la fórmula del periodo de un planeta, a partir de la ley de las áreas. El momento angular en coordenadas polares se escribe

Integrando

El primer miembro, es el área barrida por el radio vector cuando se mueve desde la posición angular θ, a la posición θ=π. Despejando t se obtiene.

Vamos ahora a estudiar los distintos casos que se pueden presentar

 

El ángulo de disparo es φ=0º.

El momento angular L=0, por lo que la trayectoria es una línea recta que pasa por el centro de fuerzas. El proyectil asciende y luego cae hacia la Tierra a lo largo de la dirección radial.

La máxima altura que alcanza, se calcula poniendo v=0 en la ecuación de la energía y se despejando la incógnita r.

No podemos calcular de forma simple el tiempo que tarda el proyectil en impactar sobre la superficie de la Tierra ya que la aceleración no es constante.

Ejemplo

Lanzamos un proyectil desde la altura h=6000 km con velocidad inicial v0= 4500 m/s en la dirección radial r0=6.0·106+6.37·106 m

La altura máxima que alcanza el proyectil es h=18.03·106 -6.37·106=11.66·106 m

La velocidad con la que llega a la superficie de la Tierra es v=8999.6 m/s

 

El ángulo de disparo es φ=180º.  

El momento angular L=0, por lo que la trayectoria es una línea recta que pasa por el centro de fuerzas. El proyectil desciende a lo largo de la dirección radial hasta que llega a la superficie de la Tierra con la misma velocidad que hemos calculado en el apartado anterior.

Ejemplo

Lanzamos un proyectil desde la posición r0=6.0·106+6.37·106 m con velocidad inicial v0= 4500 m/s en la dirección radial y sentido hacia el centro de la Tierra

La velocidad con la que impacta sobre la superficie de la Tierra es v=8999.6 m/s

 

El ángulo de disparo es φ=90º.

Alcance máximo

El alcance máximo se produce cuando el perigeo es R, y el apogeo es r0=h+R.

Como el momento angular y la energía son constantes en todos los puntos de la trayectoria y en particular, en el perigeo y en el apogeo, tenemos que

Los datos son r0 y R y las incógnitas v y v0.  La velocidad de disparo es

Ejemplo: Sea h=6000 km o bien, la distancia a lo largo de la dirección radial es r0=12.37·106 m

Calculamos la velocidad de disparo, v0=4681.969 m/s

El semieje mayor de la elipse es a=(R+r0)/2=14.37·106 m

El tiempo de vuelo es la mitad del periodo

t=P/2=4512 s

Posición del punto de impacto

Explicación:


nadianoemisosagarcia: gracias
yeroskis2020: de nd amor
Otras preguntas