Matemáticas, pregunta formulada por karolnohelia, hace 1 año

Determinar la ecuación de la recta que pasa por los puntos (4, -5) y su pendiente es 3.

Respuestas a la pregunta

Contestado por chelohuaman
0

Respuesta:

Explicación paso a paso:

Primeramente hallamos el punto de intersección entre las dos rectas. Para ello, despejamos la y de cada una de sus expresiones. Llamaremos a las rectas R1 y R2.

R1: 2x + y - 8 = 0

R1: y = -2x + 8

R2: 3x - 2y + 9 = 0

R2: 2y = 3x + 9

R2: y = x +  

Al despejar ambas ecuaciones, igualamos las y y despejamos el valor de x:

x +  = -2x + 8

x + 2x = 8 -  

=  

7x = 7

x = 1

Sabemos ahora que la coordenada x del punto de intersección es x = 1. Introducimos ese valor en alguna de las dos rectas para poder hallar el valor de la coordenada y del punto de intersección. Introducimos x = 1 en R1:

R1: y = -2(1) + 8

R1: y = -2 + 8

R1: y = 6

La coordenada y del punto de intersección es y = 6. Entonces, el punto de intersección de R1 y R2 es (1,6).

Teniendo el punto de intersección y la pendiente de la recta que queremos hallar, utilizamos la ecuación punto pendiente para determinar la ecuación de esa recta.

La ecuación es la siguiente:

(y - y0) = m(x - x0)

Donde m es el valor de la pendiente y (x0, y0) es un punto del plano cartesiano. En nuestro caso, m = -4, x0 = 1 e y0 = 6. Sustituimos estos valores:

y - 6 = -4(x - 1)

y - 6 = -4x + 4

y = -4x + 10

y + 4x - 10 = 0

La ecuación de la recta con pendiente -4 y que pasa por el punto de intersección de las rectas 2x + y – 8 = 0 y 3x – 2y + 9 = 0 es y + 4x - 10 = 0

Otras preguntas