Matemáticas, pregunta formulada por Usuario anónimo, hace 1 año

Demostrar que f(x) = x5 - 2x2 – 6 tiene una raíz en [1, 2] y utilizando el Método de Bisección determine una aproximación a la raíz con una precisión de al menos 10-3.


Usuario anónimo: Hola gracias:) Me podes ayudar con este: Determine las raíces reales de f(x)= -26+82,3x-88x^2+45,4x^3-9x^4+0,65x^5 usando el Método de la Regla Falsa aproximar en el intervalo [0 , 0.5] con ξa = 0,1%

Respuestas a la pregunta

Contestado por gedo7
0

RESPUESTA:

Inicialmente tenemos que el método de bisección nos indica que:

  • Xr = (Xa+ Xb)/2
  • Xb = f(Xa)·f(Xr)

Nuestra función es la siguiente:

f(x) = x⁵ -2x² - 6

Este proceso lo debemos realizar en varias interciones, sin embargo nos indican que la precisión debe ser al menos de 10⁻³, entonces:

E < b-a/2ⁿ

Despejamos el valor de n, tenemos;

10⁻³ = (2-1)/2ⁿ

2ⁿ = 1/10⁻³

n = 9.96

Por tanto, se deben hacer al menos 10 iteraciones.

1- Iniciamos con el intervalo [1,2]

Xr = (1+2)/2 = 1/2

Xb = [(1)⁵ -2(1)²-6]·[(0.5)⁵ -2(0.5)²-6] = 45.28 > 0  

Como Xb > 0, entonces Xr = Xa

2- Aplicamos siempre el mismo proceso. Intervalo [0.5;2].

Xr = (0.5+2)/2 = 1.25

Xb = [(1.25)⁵ -2(1.25)²-6]·[(0.5)⁵ -2(0.5)²-6] = 39.28 > 0  

Como Xb > 0, entonces Xr = Xa

3- Intervalo [1.25;2].

Xr = (1.25+2)/2 = 1.625

Xb = [(1.25)⁵ -2(1.25)²-6]·[(1.625)⁵ -2(1.625)²-6] = -0.30 < 0  

Como Xb < 0, entonces Xr = Xb

4- Intervalo [1.25,1.625]

Xr = (1.25+1.625)/2 = 1.4375

Xb = [(1.25)⁵ -2(1.25)²-6]·[(1.473)⁵ -2(1.473)²-6] = 20.68 > 0  

Como Xb > 0, entonces Xr = Xa

5- Intervalo [1.4375;1.625]

Xr = (1.4375+1.625)/2 = 1.53125

Xb = [(1.53125)⁵ -2(1.53125)²-6]·[(1.473)⁵ -2(1.473)²-6] = 7.73 > 0  

Como Xb > 0, entonces Xr = Xa

6- Intervalo [1.53125;1.625]

Xr = (1.53125+1.625)/2 = 1.578125

Xb = [(1.53125)⁵ -2(1.53125)²-6]·[(1.578125)⁵ -2(1.578125)²-6] = 2.70 > 0  

Como Xb > 0, entonces Xr = Xa

7- Intervalo [1.578125;1.625]

Xr = (1.578124+1.625)/2 = 1.601

Xb = [(1.601)⁵ -2(1.601)²-6]·[(1.578125)⁵ -2(1.578125)²-6] = 0.72 > 0  

Como Xb > 0, entonces Xr = Xa

8- Intervalo [1.601;1.625]

Xr = (1.601+1.625)/2 = 1.613

Xb = [(1.601)⁵ -2(1.601)²-6]·[(1.613)⁵ -2(1.613)²-6] = 0.17 > 0  

Como Xb > 0, entonces Xr = Xa

9- Intervalo [1.613;1.625]

Xr = (1.613+1.625)/2 = 1.619

Xb = [(1.619)⁵ -2(1.619)²-6]·[(1.613)⁵ -2(1.613)²-6] = 0.0338 > 0  

Como Xb > 0, entonces Xr = Xa

10- Intervalo [1.619;1.625]

Xr = (1.619+1.625)/2 = 1.622

Xb = [(1.619)⁵ -2(1.619)²-6]·[(1.622)⁵ -2(1.622)²-6] = 0.00416 > 0  

Llegamos a nuestra décima iteración y podemos decir que nuestra raíz tiene el valor de 1.622.

El valor real de la raíz es de 1.6232 por tanto podemos observar que tuvimos una buena aproximación.

Ver más en Brainly.lat - https://brainly.lat/tarea/10493004#readmore


Usuario anónimo: Hola gracias:) Me podes ayudar con este: Determine las raíces reales de f(x)= -26+82,3x-88x^2+45,4x^3-9x^4+0,65x^5 usando el Método de la Regla Falsa aproximar en el intervalo [0 , 0.5] con ξa = 0,1%
Otras preguntas