Salud, pregunta formulada por carla06, hace 1 año

Cuales son las estructuras de las biomoléculas y sus modelos

Respuestas a la pregunta

Contestado por soyarmy
1

La biología estructural es una rama de la biología molecular, la bioquímica y la biofísica que estudia la estructura de macromoléculas biológicas tales como las proteínas y los ácidos nucleicos, el origen de esta estructura y su relación con la función biológica de las macromoléculas. La biología estructural es de gran interés para los biólogos, puesto que las proteínas, el ADN y el ARN llevan a cabo tareas vitales para los procesos celulares y su función específicas está íntimamente ligada a su conformación tridimensional; la configuración estructural de las biomoléculas depende a su vez de su composición básica o secuencia de aminoácidos, en el caso de las proteínas, o nucleótidos de los ácidos nucleicos.1

Índice  [ocultar] 1Aplicaciones1.1Diseño de medicamentos1.2Ingeniería de proteínas2Métodos experimentales3Métodos bioinformáticos4Historia5Véase también6Referencias7Enlaces externos

Aplicaciones[editar]

Las proteínas, ácidos nucleicos y los complejos macromoleculares que forman orquestran todos los procesos celulares. El mecanismo de actuación de las macromoléculas está íntimamente ligado a la disposición de las cadenas de aminoácidos y nucleótidos: la forma de la molécula determina qué compuestos (hormonas, toxinas, nutrientes, etc) pueden unirse a ella y qué reacciones químicas es capaz de realizar o catalizar; el conocimiento de la estructura tridimiensional de estas macromoléculas no solo arroja información sobre los procesos biológicos, sino que también tiene importantes aplicaciones prácticas.

Diseño de medicamentos[editar]Artículo principal: Diseño de fármaco

Las proteínas tienen un papel importante en los trastornos de la salud. Muchas enfermedades tienen su causa en cambios en la función de una o varias proteínas, causados por mutaciones genéticas o alteraciones externas al organismo. Las proteínas también tienen un papel crucial en las infecciones, como componentes del mecanismo de ataque de bacterias, virus y otros parásitos. La determinación de la estructura de las moléculas es útil para el diseño de fármacos con la forma y propiedades óptimas para inhibir la función de las proteínas involucradas en procesos patológicos. Uno de los primeros ejemplos de medicamentos desarrollados por este método es la dorzolamida, un inhibidor de la anhidrasa carbónica usado para tratar el glaucoma.2 3

Ingeniería de proteínas[editar]Artículo principal: Ingeniería de proteínas

Los materiales biológicos poseen propiedades estructurales y catalizadoras que a menudo superan con creces las de productos sintetizados artificialmente. La biología ayuda tanto a mejorar las propiedades de biomateriales naturales mediante la ingeniería genética como al desarrollo de nuevos materiales con las caraterísticas estructurales y químicas óptimas para la función a la que estén destinados. Como ejemplo, se puede citar la mejora de las propiedades farmacológicas de la insulina, cuya estructura se ha modificado para que sea más sencilla su administración por vía intravenosa a dosis adecuadas sin que las moléculas se agreguen entre sí.1 El mismo principio se está a la producción de biosensores para la localización de sustancias como explosivos o toxinas, y el diagnóstico médico mediante la detección de metabolitos.4

Métodos experimentales[editar]Modelo de proteína a resolución atómica obtenido por cristalografía de rayos X

Las proteínas y los ácidos nucleicos son moléculas de tamaño demasiado reducido para poder ser examinadas con microscopios ópticos. Para su estudio, los biólogos utilizan métodos basados en la medida de los efectos de agentes químicos o físicos (por ejemplo, radiación electromagnética) sobre un gran número de moléculas.

Entre las técnicas empleadas para el análisis estructural de las biomoléculas destacan la cristalografía de rayos X, la criomicroscopía electrónica y la resonancia magnética nuclear; la importancia de los métodos cristalográficos residen en que proporcionan imágenes detalladas de la totalidad de la molécula, a veces a resolución atómica.5 Los avances en las tecnologías para replicar y expresar genes en grandes cantidades y en la obtención de haces de rayos-X de gran intensidad en numerosos sincrotrones, han supuesto un gran aumento en el número de nuevas estructuras determinadas por cristalografía de rayos X. La resonancia magnética nuclear o RMN proporciona datos sobre la distancias y ángulos entre los átomos y sirve para estudiar biomoléculas en condiciones fisiológicas.1 La microscopía electrónica es muy utilizada para examinar complejos de macromoléculas de gran tamaño.5

La espectroscopía tiene también muchos usos en el campo de la biología estructural. Los espectros de absorción y emisión a diversas longitudes de onda son muy sensibles a pequeñas diferencias químicas en la molécula que no siempre son detectables en un modelo tridimensional.6 7



Otras preguntas