calcular los puntos críticos de.... f(x,y) =4xy - x^4 - y^4
Respuestas a la pregunta
Contestado por
0
Los puntos críticos son (0,0); (1,1); (-1,-1)
Los puntos críticos de una función son los puntos en los cuales se anula la primera derivada ( si es de una variable) y el gradiente si es de varias variables.
Tenemos la función de dos variables
f(x,y) = 4xy - x⁴-y⁴
Calculamos el gradiente derivando con respecto a las dos variables
df/dx = 4y - 4x³
df/dy = 4x-4y³
Igualando a cero ambas ecuaciones:
4y - 4x³ = 0
y - x³ = 0
y = x³
4x-4y³ = 0
x - y³= 0
y³ = x
y = ∛x
Luego los puntos críticos son cuando:
x³ = ∛x
x = 0, o x = 1, x = -1
Si x = 0 entonces y = 0
Si x = 1 entonces y = 1
Si x = 1 entonces y = -1
Los puntos críticos son (0,0); (1,1); (-1,-1)
Otras preguntas