buenas podrian ayudarme en este ejercicio de integrales: ∫e×.cosx.dx resolver por partes
Respuestas a la pregunta
Contestado por
1
Sea u = cosx, dv = e^xdx
du = -senxdx, v = e^x
∫e^xcosx = e^xcosx - ∫e^x(-senxdx)
∫e^xcosx = e^xcosx + ∫e^xsenxdx
Ahora vuelve e integra la integral que está a la derecha...
Sea t = senx, ds = e^xdx
dt = cosxdx, s = e^x, entonces nos queda...
∫e^xcosx = e^xcosx + [e^xsenx - ∫e^xcosxdx]
∫e^xcosx = e^xcosx + e^xsenx - ∫e^xcosxdx
Ahora se pasa la integral de la derecha a la izquierda a sumar con la otra...
∫e^xcosx + ∫e^xcosxdx = e^xcosx + e^xsenx
2∫e^xcosxdx = e^xcosx + e^xsenx
∫e^xcosxdx = (e^xcosx + e^xsenx)/2
∫e^xcosxdx = e^x(cosx + senx)/2
du = -senxdx, v = e^x
∫e^xcosx = e^xcosx - ∫e^x(-senxdx)
∫e^xcosx = e^xcosx + ∫e^xsenxdx
Ahora vuelve e integra la integral que está a la derecha...
Sea t = senx, ds = e^xdx
dt = cosxdx, s = e^x, entonces nos queda...
∫e^xcosx = e^xcosx + [e^xsenx - ∫e^xcosxdx]
∫e^xcosx = e^xcosx + e^xsenx - ∫e^xcosxdx
Ahora se pasa la integral de la derecha a la izquierda a sumar con la otra...
∫e^xcosx + ∫e^xcosxdx = e^xcosx + e^xsenx
2∫e^xcosxdx = e^xcosx + e^xsenx
∫e^xcosxdx = (e^xcosx + e^xsenx)/2
∫e^xcosxdx = e^x(cosx + senx)/2
Otras preguntas