ayuda solucionar usando el metodo de igualacion
Respuestas a la pregunta
Respuesta:
Explicación paso a paso:
1
Planteamiento:
3x - 4y = -6
2x + 4y = 16
Desarrollo:
de la primer ecuación del planteamiento:
3x = 4y - 6
x = (4y-6)/3 ec. 3
de la segunda ecuación del planteamiento:
2x = 16 -4y
x = (16-4y)/2 ec. 4
Igualando las ecuaciones 3 y 4:
(4y-6)/3 = (16-4y)/2
2(4y-6) = 3(16-4y)
8y - 12 = 48 - 12y
12y + 8y = 48 + 12
20y = 60
y = 60/20
y = 3
de la ecuación tres:
x = (4y-6)/3
x = (4*3 - 6) /3
x = (12-6)/3
x = 6/3
x = 2
Comprobación:
de la segunda ecuación del planteamiento:
2x + 4y = 16
2*2 + 4*3 = 16
4 + 12 = 16
Respuesta:
x = 2
y = 3
2
Planteamiento:
x + y = 60
16x + 20y = 1100
Desarrollo:
de la primer ecuación del planteamiento:
x = 60 - y ec., 3
de la segunda ecuación del planteamiento:
16x = 1100 - 20y
x = (1100-20y)/16 ec. 4
Igualando las ecuaciones 3 y 4:
60 - y = (1100-20y)/16
16(60-y) = 1100 - 20y
960 - 16y = 1100 - 20y
20y - 16y = 1100 - 960
4y = 140
y = 140/4
y = 35
de la tercera ecuación:
x = 60 - y
x = 60 - 35
x = 25
Comprobación:
de la segunda ecuación del planteamiento:
16*25 + 20*35 = 1100
400 + 700 = 1100