8. Resuelve paso a paso las siguientes inecuaciones lineales: A. 5x −1 9 − 7x + 5 E. x − (7x − 3) < 7 − 4x – 5
Respuestas a la pregunta
Respuesta:
SOLUCIÓN DE INECUACIONES DE UNA VARIABLE
Resolver una inecuación es hallar el conjunto de soluciones de las incógnitas que
satisfacen la inecuación.
Terminología: ax + b > cx + d
Resolver cada una de las siguientes inecuaciones o desigualdades, expresando
cada conjunto de soluciones en notación por desigualdad, intervalo y gráfico:
1. Resolviendo una inecuación lineal > +
Solución.
Operando el segundo miembro:
6 > 12
Dividiendo entre 6 a ambos lados para despejar x:
6
>
12
Simplificando resulta que (solución por desigualdad):
> 2
Por consiguiente el conjunto solución para x son todos los valores mayores
que 2.
Solución por intervalo: (2, ∞)
Gráficamente: (
Primer miembro Segundo miembro
0 2
0
8
2. Resolviendo una inecuación lineal − < + 5
Solución:
Pasando x al primer miembro y 3 al segundo:
2 − < 5 + 3
Operando término a término resulta que (solución por desigualdad):
< 8
Por consiguiente el conjunto solución para x son todos los valores menores
que 8.
Solución por intervalo: (−∞, 8)
Gráficamente: )
3. Resolviendo una inecuación lineal con fracciones −
≥ −
Solución:
Multiplicando cada miembro por 2 y simplificando:
1 − 3x
2
≥ (x − 4)
2 − 3x ≥ 2x − 8
Pasando 2x al primer miembro y el 2 al segundo:
−3x − 2x ≥ −8 − 2
Operando término a término:
−5x ≥ −10
Dividiendo entre -5 a ambos lados e invirtiendo el sentido de la desigualdad:
−5x
− ≥
−10
−
0 2
0 4
Simplificando resulta que (solución por desigualdad):
x ≤ 2
Por consiguiente el conjunto solución para x son todos los valores menores o
iguales que 2.
Solución por intervalo: (−∞, 2]
Gráficamente: ]
4. Resolviendo una inecuación con nociones algebraicas
( + )( − ) < ( − ) +
Solución.
Aplicando la propiedad distributiva en el primer miembro y resolviendo el
producto notable en el segundo:
x
! + 2x − 3 < x! − 2x + 1 + 3x
Suprimiendo
!
en ambos miembros y transponiendo términos semejantes:
2 + 2 − 3 < 1 + 3
< 4
Por consiguiente el conjunto solución para x son todos los valores menores
que 4.
Solución por intervalo: (−∞,
Explicación paso a paso:
dame la coronita por favor
Respuesta:
haces una agrupacion de terminos
Explicación paso a paso:
5x-7x=-2x primero resuelves las que son con variable igual en este caso estos dos
-19+5=-14 lo mismo resuelves ya que los dos tienen la misma variable y lo solucionas con su respectiva operacio
ahora te va a quedar algo asi
-2x-14 y esto lo solucionas por factorizacion
y la respuesta es
-2(x+7)
espero te sirva <3