8, 12 , 18 son números perfectos??
Respuestas a la pregunta
Respuesta:
no
Explicación paso a paso:
El matemático Euclides descubrió que los cuatro primeros números perfectos vienen dados por la fórmula {\displaystyle 2^{n-1}\cdot (2^{n}-1)}{\displaystyle 2^{n-1}\cdot (2^{n}-1)}:
n = 2: 21 × (22 – 1) = 6
n = 3: 22 × (23 – 1) = 28
n = 5: 24 × (25 – 1) = 496
n = 7: 26 × (27 – 1) = 8128
Al darse cuenta de que 2n – 1 es un número primo en cada caso, Euclides demostró que la fórmula 2n–1(2n – 1) genera un número perfecto par siempre que 2n – 1 es primo.
Los matemáticos de la Antigüedad hicieron muchas suposiciones sobre los números perfectos basándose en los cuatro que ya conocían. Muchas de estas suposiciones han resultado ser falsas. Una de ellas era que, como 2, 3, 5 y 7 eran precisamente los cuatro primeros números primos, el quinto número perfecto se obtendría con n = 11, el quinto número primo. Sin embargo, 211 – 1 = 2047 = 23 × 89 no es primo y por tanto n = 11 no genera un número perfecto. Dos de las otras suposiciones equivocadas eran:
El quinto número perfecto tendría cinco dígitos, ya que los cuatro primeros tienen 1, 2, 3 y 4, respectivamente.
Los números perfectos terminarían alternativamente en 6 y en 8.