4(x+3)² - 2(x-1)² + (x-5)(x+3) + 2(x²-5x+1) = x² +10
Respuestas a la pregunta
Respuesta:
:)
Explicación paso a paso:
4(x+3)² - 2(x-1)² + (x-5)(x+3) + 2(x²-5x+1) = x² +10
(x+3)² = x² + 2(x)(3) + 3² = x² + 6x + 9
(x-1)² = x² + 2(x)(-1) + (-1)² = x² - 2x + 1
(x-5)(x+3) = x² + 3x - 5x - 15 = x² - 2x - 15
4(x² + 6x + 9) - 2(x² - 2x + 1) + (x² - 2x - 15) + 2(x² - 5x + 1) = x² + 10
4x² + 24x + 36 - (2x² - 4x + 2) + x² - 2x - 15 + 2x² - 10x + 2 = x² + 10
4x² + 24x + 36 - 2x² + 4x - 2 + x² - 2x - 15 + 2x² - 10x + 2 = x² + 10
5x² + 16x + 21 = x² + 10
5x² + 16x + 21 - x² - 10 = 0
4x² + 16x + 11 = 0
{-b ± √(b² - 4ac)} / 2a
a = 4
b = 16
c = 11
{-(16) ± √((16)² - 4(4)(11))} / 2(4) = x
{-(16) ± √(256 - 176)} / 8 = x
{-(16) ± √(80)} / 8 = x
{-16 ± 8.9443} / 8 = x
x1 = {-16 + 8.9443} / 8
x1 = {-7.056} / 8
x1 = -0.8820
x2 = {-16 - 8.9443} / 8
x2 = {-24.9443} / 8
x2 = -3.1180