Matemáticas, pregunta formulada por mcpxms, hace 1 año

2. El ingreso marginal de una pizzería es de 100-2x dlls por paquete cuando el nivel de producción es de xs paquetes, si el beneficio de la pizzería es de 700 cuando se producen 10 paquetes.
a. ¿Cuál es el mayor beneficio posible de la pizzería?

b. Cuál es la función de ingreso total.

c. ¿Cuántos serían los paquetes que maximizan el ingreso?



Ayuda por favor, gracias...

Respuestas a la pregunta

Contestado por juanga1414
5

El Ingreso marginal de una pizzería es de 100 - 2x U$S por paquete cuando el nivel de producción es de " x "paquetes. Si el Beneficio de la pizzería es de U$S 700 cuando se producen 10 paquetes.

a. ¿Cuál es el mayor beneficio posible de la pizzería?

b. Cuál es la función de ingreso total.

c. ¿Cuántos serían los paquetes que maximizan el ingreso?

Hola!!!

Ecuación del Beneficio: B(x) = I(x) - C(x)

Ingreso Marginal: I'(x) = 100 - 2x ⇒

I(x) = ∫100 - 2x

I(x) = 100x - 2x²/2

I(x) = -x² + 100x


Ecuación del Costo: C(x) = Costo Variable × Cantidad

C(x) = CV × X

Sabemos que B(x) = I(x) - C(x) ⇒

B(x) = -x² + 100x - (CV × x)  ⇒

B(10) = - (10)² + 100×(10) - CV×10

700 = -100 + 1000 - 10CV

10CV = -100 + 1000 - 700

10CV = 200

CV = 20  ⇒

C(x) = 20x


B(x) = I(x) - C(x)

B(x) = -x² + 100x - 20x

B(x) = -x² + 80x    Ecuación del Beneficio  ⇒


Para hallar el beneficio Máximo debemos derivar la Función e igualarla a cero, obtenemos x = cantidad de paquetes que se debe vender para que su Beneficio sea Máximo, y con el valor de este sustituimos en la Ecuación Original y obtenemos en Beneficio Máximo.

El Máximo Beneficio se da en el Vértice de la Parábola.


B(x) = -x² + 80x ⇒

B'(x) = -2x + 80

-2x + 80 = 0 ⇒

x = -80/-2

x = 40


Sustituto:

B(40) = -(40)² + 80(40)

B(40) = 4800  ⇒

Beneficio Máximo = U$S 4800

c)

Función Ingreso:  

I(x) = -x² +100x

c)

Calculado en a)

Para que el Beneficio sea Máximo se deben vender 40 Paquetes


Espero haber ayudado!!!

Saludos!!!!


Otras preguntas