Matemáticas, pregunta formulada por alex8915, hace 9 meses

x^2+ 5x + 6 = 0 *

valor de x1 y x2​

Respuestas a la pregunta

Contestado por gianmarcoschambillae
0

Respuesta:

X1 = -2   y X2= -3

Explicación paso a paso:

Para esta mismo resultado se pueden aplicar hasta tres posibles rutas:

1.-El método por factorización.

2.-El método por la fórmula general.

3.-El método de Po Shen Loh.

Por el primer método:

x^2+ 5x + 6 = 0          

x              2   = 2x

       X

x              3   =  3x

                       -----

                         5x      

Entonces: (x+2)(x+3)=0                          

Primera solución: x+2= 0           x=0-2        x= -2

Segunda solución: x+3= 0         x=0-3         x= -3

Por el segundo método:

x^2+ 5x + 6 = 0

Identificamos que variables son a, b y c en la ecuación cuadrática de la forma:    a^2+bx+c

Al observar nos damos cuenta que:

a= 1(se sobreentiende que X está multiplicado por 1).

b= 5.

c= 6.

Entonces, usamos la fórmula general, la cual es:  X= -b ±\sqrt{b^{2} - 4ac

                                                                                        -------------------

                                                                                               2a

Reemplazamos:

      -5± \sqrt{5^{2} - 4(1)(6) }                         -5±\sqrt{25 - 24}           -5±\sqrt{1}            -5±1

     ------------------------          =          ----------------------   =    ----------    =  ---------

                  2(1)                                        2                            2                 2

Entonces:  

Primera solución=\frac{-5+1}{2}   = \frac{-4}{2} = -2

Segunda solución=\frac{-5-1}{2} =\frac{-6}{2}  = -3

Tercer método:

x^2+ 5x + 6 = 0

Definimos el centro de la variable b(es decir, 5) y lo vuelvo negativo: C=\frac{-5}{2}

Luego, orientamos a este valor en base a U con negativo y positivo= \frac{-5}{2}±U (este define la variación del centro que presente x^2, y se tiene que usar esta forma).

Formulamos este planteamiento:    ( C -+ U)(C -U)= 6

Reemplazamos: (\frac{-5}{2}+U)(

Esto es una diferencia de cuadrados, entonces quedaría:  \frac{-5}{2} ^{2} - U^{2}= 6  

Esto es debido a que la diferencia tiene que dar el tercer valor.

Finalmente: \frac{25}{4}-6=U^{2} =

Ahora, calculamos las dos soluciones:

Primera solución= -5/2+ 1/2= -4/2 = -2

Segunda solución= -5/2- 1/2= -6/2 = -3

Espero haberte ayudado en algo...

                         

Otras preguntas