Utiliza los productos notables y resuelve.
(x3+3)2=
(x3-3)2=
(a3-b2)(a3+b2)=
(1-8xy)(1+8xy)=
Respuestas a la pregunta
Respuesta:
(x3+3)2=
=(x3+3)(x3+3)
=(x3)(x3)+(x3)(3)+(3)(x3)+(3)(3)
=x6+3x3+3x3+9
=x6+6x3+9
(x3-3)2=
=(x3+−3)(x3+−3)
=(x3)(x3)+(x3)(−3)+(−3)(x3)+(−3)(−3)
=x6−3x3−3x3+9
=x6−6x3+9
(a3-b2)(a3+b2)=
=(a3+−b2)(a3+b2)
=(a3)(a3)+(a3)(b2)+(−b2)(a3)+(−b2)(b2)
=a6+a3b2−a3b2−b4
=a6−b4
(1-8xy)(1+8xy)=
=(1+−8xy)(1+8xy)
=(1)(1)+(1)(8xy)+(−8xy)(1)+(−8xy)(8xy)
=1+8xy−8xy−64x2y2
=−64x2y2+1
Explicación paso a paso:
Respuesta:
a) (x3+3)2=
=(x3+3)(x3+3)
=(x3)(x3)+(x3)(3)+(3)(x3)+(3)(3)
=x6+3x3+3x3+9
=x6+6x3+9
b) (x3-3)2=
=(x3+−3)(x3+−3)
=(x3)(x3)+(x3)(−3)+(−3)(x3)+(−3)(−3)
=x6−3x3−3x3+9
=x6−6x3+9
c) (a3-b2)(a3+b2)=
=(a3+−b2)(a3+b2)
=(a3)(a3)+(a3)(b2)+(−b2)(a3)+(−b2)(b2)
=a6+a3b2−a3b2−b4
=a6−b4
d) (1-8xy)(1+8xy)=
=(1+−8xy)(1+8xy)
=(1)(1)+(1)(8xy)+(−8xy)(1)+(−8xy)(8xy)
=1+8xy−8xy−64x2y2
=−64x2y2+1
Explicación paso a paso: