Exámenes Nacionales, pregunta formulada por axeleduardo5378, hace 16 días

Usando la reducción al primer cuadrante el tan 300° es igual a:.

Respuestas a la pregunta

Contestado por Usuario anónimo
1

Respuesta:

Hola espero y te ayude

Un ángulo puede estar situado en cualquiera de los cuatro cuadrantes de la circunferencia. Los valores de sus correspondientes razones trigonométricas dependen de su posición.

Cuando un ángulo se encuentra situado en el segundo, tercero o cuarto cuadrante siempre es posible relacionarlo con otro del primer cuadrante cuyas líneas trigonométricas tengan los mismos valores absolutos.

Las relaciones entre las razones trigonométricas de los ángulos situados en los distintos cuadrantes resultaba esencial cuando no se disponía de calculadoras. Existían tablas con los valores de las razones para ángulos del primer cuadrante. Los demás ángulos no figuraban en la tabla pues no era necesario: bastaba con reducirlo al primer cuadrante.

No obstante el tema sigue siendo de interés para aplicar las razones trigonométricas inversas, es decir, para determinar un ángulo conocida una de sus razones trigonométricas. Como sabemos, si buscamos un ángulo a partir de una razón trigonométrica, la calculadora nos proporciona sólo una solución. Nosotros encontraremos el resto de soluciones con los conocimientos adquiridos en esta unidad.

Trabajaremos con circunferencias goniométricas, es decir, de radio 1.

RELACIÓN ENTRE LAS RAZONES TRIGONOMÉTRICAS DE ÁNGULOS SUPLEMENTARIOS

Ángulos suplementarios son los que suman 180º. Si el valor de un ángulo es "A", el valor del suplementario será "180º-A".

La relación de las razones trigonométricas de un ángulo con las de su suplementario va a permitir "reducir" ángulos del segundo al primer cuadrante.

Como puede observarse en la figura, los triángulos OMA y ON(180º-A) son iguales ya que siendo rectángulos tienen igual la hipotenusa (es el radio) y un ángulo agudo: ángulo AOM = ángulo (180º-A)ON

En consecuencia

sen (180º-A) = segmento (180º-A)N = segmento AM = sen A

cos(180º-A) = segmento ON = - segmento OM = - cos A

y haciendo el cociente de seno entre coseno:

tg (180º-A) = sen (180º-A)/cos(180º-A) = sen A / - cos A = - tg A

En conclusión, las relaciones existentes entre las razones trigonométricas de ángulos suplementarios son:

sen (180º-A) = + sen A

cos(180º-A) = - cos A

tg (180º-A) = - tg A

Otras preguntas