Una vagoneta de 50 kg se mueve por una montaña. Inicialmente se encuentra en un punto A con velocidad de 5 m/s y una altura de 3 m, al cabo de un rato, se encuentra en un punto B con velocidad de 3.2 m/s . Calcular la altura en la que se encuentra en el punto B.
Respuestas a la pregunta
Contestado por
2
Datos:
m= 50kg
Vi = 5 m/seg
h1 = 3 m
Vf = 3,2 m/seg
g= 9,8 m/seg²
Altura en la que se encuentra en el punto B
EMi = EMf Principio de la conservación de la energía
Eci + Epi = Ecf + Epf
1/2 m* Vi² + m*g*h = 1/2m * Vf² + m*g* h2
1/2 50 kg (5m/seg)² + 50kg* 9,8 m/seg²*3m = 1/2 50kg(3,2m/seg)² +490kg m²/seg²*h2
625kg*m²/seg² + 1470 kg*m²/seg² = 256 kg*m²/seg² +490 kg*m²/seg² *h2
h2 = 3,75 m
La altura en la que se encuentra en el punto B es de 3,75 m
m= 50kg
Vi = 5 m/seg
h1 = 3 m
Vf = 3,2 m/seg
g= 9,8 m/seg²
Altura en la que se encuentra en el punto B
EMi = EMf Principio de la conservación de la energía
Eci + Epi = Ecf + Epf
1/2 m* Vi² + m*g*h = 1/2m * Vf² + m*g* h2
1/2 50 kg (5m/seg)² + 50kg* 9,8 m/seg²*3m = 1/2 50kg(3,2m/seg)² +490kg m²/seg²*h2
625kg*m²/seg² + 1470 kg*m²/seg² = 256 kg*m²/seg² +490 kg*m²/seg² *h2
h2 = 3,75 m
La altura en la que se encuentra en el punto B es de 3,75 m
Otras preguntas