Estadística y Cálculo, pregunta formulada por alvaro4575, hace 1 año

una planta de producción trabaja en 3 turnos. En el primer turno emplea 20 trabajadores en el segundo 15 trabajadores y en el tercer turno 10 trabajadores. El gerente desea seleccionar 6 trabajadores para realizar una revista de satisfacción de los garantes laborales que ofrecen las empresa. Si se supone que la selección de los 6 trabajadores se hace sin tener en cuenta a que turno pertenece

Respuestas a la pregunta

Contestado por luismgalli
23

a) 8145060  formas se puede hacer esta selección

b) 897750  formas de que haya dos empleados de cada turno

c) 3000620  formas si se quiere que en el turno de noche haya solo un empleado.

Explicación:

Combinaciones:

Cn,k = n!/k!(n-k)!

Completando el enunciado:

El gerente desea seleccionar 6 trabajadores para realizar una revista de satisfacción de los garantes laborales que ofrecen las empresa. Si se supone que la selección de los 6 trabajadores se hace sin tener en cuenta a que turno pertenece:

a) de cuantas formas se puede hacer esta selección

b) la misma pregunta de a pero se quiere que halla 2 empleados de cada turno

c) la misma pregunta pero se quiere que en el turno de noche haya solo un empleado.

a)  de cuantas formas se puede hacer esta selección

n= 20+15+10 = 45

k = 6 trabajadores al azar

C(45,6) = 45!/(39!6!) = 8145060

b)   la misma pregunta de a pero se quiere que halla 2 empleados de cada turno

C(20,2) * C(15,2) * C(10,2) = 190 * 105 * 45 = 897750

c)   la misma pregunta pero se quiere que en el turno de noche haya solo un empleado.

Supongamos que el turno de noche es el tercero, el en primero y segundo debe haber los siguientes empleados a los que añadimos C(10,1) por el empelado de noche :

Cinco del primer turno, ninguno del segundo y uno del tercero:

C(20,5) * C(15,0) * C(10,1) = 155040

Cuatro del primer turno, uno del segundo y uno del tercero:

C(20,4) * C(15,1) * C(10,1) = 726750

Tres del primer turno, dos del segundo y uno del tercero:

C(20,3) * C(15,2) * C(10,1) = 1197000

Dos del primer turno, tres del segundo y uno del tercero:

C(20,2) * C(15,3) * C(10,1) = 864500

Uno del primer turno,cuatro del segundo y uno del tercero:

C(20,1) * C(15,4) * C(10,1) = 273000

Ninguno  del primer turno, Cinco del segundo y uno del tercero:

C(20,0) * C(15,5) * C(10,1) = 30030

Totalizando =  3000620

Otras preguntas