Matemáticas, pregunta formulada por genia135, hace 10 meses

Una pila de 2020 hojas tiene una altura de 28 cm. ¿Cuántas veces habría que doblar una sola hoja por la mitad para superar la altura de las 2020 hojas?

A
11 Veces

B
2020 veces

C
No se puede saber.

D
72 veces

E
1010 veces​

Respuestas a la pregunta

Contestado por pierodelacruz768
2

Respuesta:

La leyenda urbana dice que es imposible doblar una hoja de papel por la mitad más de ocho veces. En realidad, el récord mundial lo tiene Britney Gallivan, con 12 pliegues. Lo fascinante es que, según las matemáticas, si doblamos un papel por la mitad 103 veces, su grosor sería mayor que el diámetro del Universo observable, estimado en 93.000 millones de años luz.

La explicación a esta deliciosa paradoja está en el crecimiento exponencial. Una hoja de papel normal (el típico formato a4 con un gramaje de 80 gm /m2) tiene un grosor de 0,1 milímetros. Si la doblamos exactamente por la mitad, tendremos el doble de ese grosor.

A medida que la sigamos doblando una y otra vez por la mitad las cosas se ponen interesantes (e imposibles). Doblada siete veces, la hoja tiene un grosor equivalente a un cuaderno. Si la pudiéramos doblar 23 veces, su grosor ya superaría el kilómetro. 30 pliegues nos llevarían al espacio, sobrepasando la barrera de los 100 kilómetros. En 42 pliegues llegaríamos a la luna, y en 52 al sol.

El grosor del papel sigue aumentando exponencialmente. En 81 pliegues, su grosor sería casi el de la galaxia de Andrómeda, con 127 años luz. Solo 9 pliegues más llevarían a nuestro papel imaginario más allá de los confines del Supercluster de Virgo en el que nuestra galaxia convive con al menos otras cien.

Llegamos al papel doblado 103 veces. Su grosor sería superior a 93.000 millones de años luz. Si alguien cree que puede batir el récord de Britney Gallivan, puede comenzar a practicar. Raju Varghese ofrece el experimento explicado aquí con una tabla de incrementos exponenciales del papel más detallada.


genia135: entonces C?
Otras preguntas