Física, pregunta formulada por litzygamez30, hace 11 meses

Una perturbación que se transmite en forma de una onda cuya frecuencia es de 200 Hz si la velocidad de la onda en el aire es de 340m/s . Calcule la longitud de onda de la perturbación

Respuestas a la pregunta

Contestado por angiexilenbeltrandel
1

Respuesta:

Ejercicios resueltos

Bolet´ın 4

Movimiento ondulatorio

Ejercicio 1

La nota musical la tiene una frecuencia, por convenio internacional de 440 Hz. Si en

el aire se propaga con una velocidad de 340 m/s y en el agua lo hace a 1400 m/s, calcula

su longitud de onda en esos medios.

Soluci´on 1

La frecuencia es una caracter´ıstica del centro emisor. Por tanto es la misma en todos

los medios.

λaire =

vaire

ν

=

340

400

= 0,773 m

λagua =

vagua

ν

=

1400

400

= 3,27 m

Ejercicio 2.

La ecuaci´on de una onda, en unidades del S.I., que se propaga por una cuerda es:

y(x,t) = 0,05 cos 2 π (4 t − 2 x)

1. Determina las magnitudes caracter´ısticas de la onda (amplitud, frecuencia angular,

numero ´ de onda, longitud de onda, frecuencia, periodo, velocidad de propagaci´on)

2. Deduce las expresiones generales de la velocidad y aceleraci´on transversal de un

elemento de la cuerda y sus valores m´aximos.

3. Determina los valores de la elongaci´on, velocidad y aceleraci´on de un punto situado

a 1 m del origen en el instante t = 3 s

Soluci´on 2

1. Operando en la expresi´on de la onda: y(x,t) = 0,05 cos(8 π t − 4 π x) y comparando

con la expresi´on general: y(x,t) = A cos(ω t − k x) se tiene que:

Amplitud: A = 0,05 m;

1

frecuencia angular: ω = 8 π rad/s;

numero ´ de onda: k = 4 π rad/m;

longitud de onda: λ =

2 π

k

=

2 π

4 π

= 0,5 m;

frecuencia: ν =

ω

2 π

=

8 π

2 π

= 4 Hz;

periodo: T =

1

ν

=

1

4

= 0,25 s;

velocidad de propagaci´on: v = λ ν =

ω

k

= 0,5 · 4 =

8 π

4 π

= 2 m/s

2. Velocidad de vibraci´on:

v =

dy

dt

= −0,4 π sin 2 π (4 t − 2 x) m/s ⇒ vma´x = 0,4 π m/s

Aceleraci´on de vibraci´on:

a =

dv

dt

= −3,2 π

2

cos 2 π (4 t − 2 x) m/s2 ⇒ ama´x = 3,2 π

2 m/s2

3. Para calcular la elongaci´on, velocidad y aceleraci´on del punto considerado en el

instante indicado, basta sustituir sus valores en las ecuaciones generales correspondientes.

y(x = 1,t = 3) = 0,05 cos 2 π (4 · 3 − 2 · 1) = 0,05 m

El punto se encuentra en su m´axima separaci´on central y hacia la parte positiva.

v(x = 1,t = 3) = −0,4 π sin 2 π (4 · 3 − 2 · 1) = 0 m/s

El punto est´a en un extremo de la vibraci´on y por ello su velocidad es igual a cero.

a(x = 1,t = 3) = −3,2 π

2

cos 2 π (4 · 3 − 2 · 1) = −3,2 π

2 m/s2

Al estar el punto en el extremo positivo de la vibraci´on, la aceleraci´on es m´axima y

de sentido negativo, se dirige hacia el centro de la oscilaci´on.

Explicación:

Otras preguntas