Matemáticas, pregunta formulada por nataliaortiiz6457, hace 1 año

Una nave espacial gira en torno a la Tierra a una altitud de 680 kilómetros. Cuando un astronauta ve el horizonte de la Tierra, el ángulo u mostrado en la figura es de 65.8°. Use esta información para estimar el radio de la Tierra.

Respuestas a la pregunta

Contestado por tbermudezgomez28
9

El radio según la información dada es de Co = 1513.06 km

Explicación paso a paso:

Datos del enunciado:

Altitud = 680 kilómetros

angulo = 65.8°

radio = ?

Para resolver este problema usamos razones trigonométricas, en este caso al tener la altura (Cateto adyacente) el angulo y queremos el radio (Cateto opuesto), usaremos la razon de la tangente

Tan∅ = Co/Ca

Co = CaTan∅

Co = 680km Tan(65.8°)

Co = 1513.06 km

Contestado por Christoproxp
1

Respuesta:

no se de donde mi compa "el experto"  se saco el 1513.06 km pero a mi me dio 6301.09 y mi profe dice que esta bien ._xd

Explicación paso a paso:

En este caso usaremos el Seno de 65.8, por lo que al acomodarlo quedaria mas o menos asi...

Sen 65.8 = Cateto Opuesto / Hipotenusa
Sen 65.8 = R                          / R + 608

El 608 se le agrega a la linea de donde esta R (R es la hipotenusa y al mismo tiempo el radio de la tierra) por que se complementan entre si para formar la hipotenusa...
Entonces...

R = Sen 65.8 (R + 608)
R = 0.912 (R+608)
R = 0.912R + 554.496

y ahora como si estuvieramos haciendo una ecuacion, X o en este caso "R", pasa al otro lado...

R-0.912R = 554.496
0.088R   = 554.496
R = 554.496 / 0.088
R = 6301.09


FACILISIMO VERDAD

Otras preguntas