Una moneda está cargada de manera que sale dos veces más seguido que sello. Esta moneda se lanza hasta que resulte una cara o tres sellos. Hallar el valor esperado de los lanzamientos de la moneda.
Respuestas a la pregunta
espero que te allá ayudado sígueme y dame corona y corazón
Explicación:
i se define a X como el “Número de caras obtenidas”, entonces X = 0, 1, 2, 3.
Como sale cara tres veces más que sello, entonces la probabilidad de que salga cara en cualquier lanzamiento será 3/4, con lo cual p = 3/4 y q = 1 – p = 1/4 .
Si queremos obtener x caras, p(x) = P(X = x) es la probabilidad de obtener “x caras” y “3-x” sellos. La probabilidad de obtener x caras es (3/4)x y “3-x” sellos es (1/4)(3-x).
En los tres lanzamientos debemos obtener x caras. Esto lo hacemos de C(3, x) maneras. Luego la distribución de probabilidad de X será p(x) = P(X=x) = C(3, x) (3/4)x (1/4)(3-x) ; x = 0, 1, 2, 3.
La función de probabilidad mostrada en forma tabular es la siguiente:
Ejemplo 14 De un lote que contiene 25, cinco de los cuales son defectuosos, se seleccionan en forma aleatoria a 4 de ellos. Sea X el número de defectuosos hallados.
Obtener la distribución de probabilidad de X si
a) los artículos son extraídos con reposición
b) los artículos son extraídos sin reposición
Solución
Caso a) La probabilidad de que el primero extraído sea defectuoso es 5/25.
Si cada uno de los productos extraídos se repone, entonces la probabilidad de que el siguiente extraído sea defectuoso sigue siendo la misma ya que los defectuosos siguen siendo 5 de un total de 25. En este caso el experimento genera una distribución de probabilidad conocida coma la binomial que la estudiaremos más adelante. Por ello si p(x) = P(X = x) es la función de probabilidad de obtener x artículos defectuosos y 4-x no defectuosos, entonces
Caso b) En este caso los artículos se extraen sin reposición y esto implica que, si la probabilidad de extraer un defectuoso en la primera es 5/25, la probabilidad de que el segundo también sea defectuoso es 4/24 (ya que si salió defectuoso la primera vez ahora sólo quedan 4 defectuosos de un total de 24).
Usaremos la definición de probabilidad clásica para encontrar la función de distribución de probabilidad de X; es decir,
Debemos obtener X defectuosos:
El número de maneras de obtener x defectuosos de un total de 5 es lo mismo que formar grupos de x cada uno, de un conjunto de 5 elementos; esto es lo que se conoce como “combinaciones de 5 tomados de x en x”; es decir, C(5, x)
El número de maneras de obtener 4-x defectuosos de un total de 20, es formar grupos de 4-x tomados de un total de 20 que constituye “combinaciones de 20 tomados de 4-x en 4-x”; es decir C(20, 4-x).
El número de maneras de obtener x defectuosos y 4-x no defectuosos es C(5,x)C(20,4-x) por el principio de multiplicación. Esto nos da el número de casos favorables.
Veamos ahora los casos posibles:
Aquí se trata de formar grupos de 4 de un total de 25 en donde no interesa el orden. El número de maneras de hacerlo es C(25, 4), lo que constituye el espacio muestral.
Luego la probabilidad de la ocurrencia del evento X = x es