Matemáticas, pregunta formulada por oskjun, hace 1 año

Una escalera de 10 pies de largo se apoya contra una pared vertical. Si la base de la escalera resbala a razón de 1 pie/segundo. ¿Con que rapidez resbala hacia abajo la parte superior de la escalera, cuando la base esta a 6 pies de la pared?

Respuestas a la pregunta

Contestado por Herminio
39
Veamos. Sea x la distancia desde el pie de la escalera hasta la pared. Sea y la distancias desde la parte superior de la escalera hasta el suelo.

Se cumple que:

x² + y² = 10²

Tanto x como y son funciones del tiempo. Las derivadas son las velocidades.

Vx = dx/dt; Vy = dy/dt: derivamos:

2 x Vx + 2 y Vy = 0; de modo que Vy = - x/y . Vx

Vx = 1 pie/s; para x = 6 pies, y = √(10² - 6²) = 8 pies; reemplazamos:

Vy = - 6/8 . 1 pie/s = - 0,75 pie/s

El signo menos implica que desciende

Saludos Herminio
Contestado por mgangel0020
3

   La rapidez con la que resbala hacia abajo la escalera es de dy = 0.75 pies/s

¿Qué son las derivadas?

Las derivadas en forma teóricas son razones de cambio con la que una función o una variable varía en función del tiempo.

 Partimos de la vista lateral que define el problema, es decir, el Teorema de Pitágoras:

           x² + y² = d²  

Siendo d la longitud de la escalera

x² + y² = 10²

 Las variables que varían en función de tiempo son "x" y "y", derivamos

2xdx + 2ydy = 0    si la escalera resbala a razón de 1ft/s

2(6ft)(1ft/s) + 2√(10² - 6²)dy = 0

dy=  [- 2(6ft)(1ft/s)]/2√(10² - 6²)

dy = 0.75 pies/s

Aprende más sobre derivadas en:

brainly.lat/tarea/59669855

Adjuntos:
Otras preguntas