Una caja negra contiene una esfera blanca y tres guindas otra caja gris contiene cuatro esferas blancas y cuatro esferas guindas. Se selecciona una caja al azar y se elige una esfera . Si la esfera resultante es guinda, calcule la probabilidad de que provenga de la caja negra
Respuestas a la pregunta
Contestado por
59
Respuesta: 3/5
Explicación paso a paso:.
countrystar:
y la explicacion
Contestado por
2
La probabilidad de que sea de la caja negra dado que es una guinda es igual a 0.6
Sean los eventos:
A: se selecciona la caja gris
B: La esfera es una guinda
P(A) = 1/2 (ya que son dos cajas)
La probabilidad de B es la probabilidad de B y caja gris más la probabilidad de B y caja negra
P(B) = P(B∩A) + P(B∩A') = P(A)*P(B|A) + P(A')*(P|A') (teorema de Bayes)
P(B|A') = 3/(1+3) = 3/4 = 0.75
P(B|A) = 4/(4 + 4) = 4/8 = 1/2 = 0.5
P(B) = 1/2*3/4 + 1/2*1/2 = 3/8 + 1/4 = (3 + 2)/8 = 5/8 = 0.625
Queremos conocer si es una guinda la probabilidad de que la caja sea negra esto será:
P(A'|B) = P(A'∩B)/P(B) = (0.5*0.75)/0.625 = 0.6
Puedes visitar: brainly.lat/tarea/33579751
Adjuntos:
Otras preguntas
Matemáticas,
hace 5 meses
Biología,
hace 5 meses
Matemáticas,
hace 5 meses
Historia,
hace 11 meses
Física,
hace 11 meses
Matemáticas,
hace 1 año