Física, pregunta formulada por clubbarcelona89, hace 1 año

- Una bala se dispara a un ángulo de 530 con respecto a la horizontal. La magnitud de la velocidad inicial de la bala es de 150m/s. a) Calcule el tiempo que la bala permanece en el aire. b) Calcule la posición de la bala cuando alcanza la altura máxima.

Respuestas a la pregunta

Contestado por haroldcataneda
1

Respuesta:

Explicación:

emos demostrado que el alcance máximo se obtiene para el ángulo de tiro de 45º, cuando el cañón y el blanco están  en una superficie horizontal.

En esta página, vamos a estudiar el movimiento de un proyectil que se dispara desde una altura h sobre una superficie horizontal, y a calcular el ángulo de tiro para el cual el alcance es máximo.

Este ejemplo, nos permiten estudiar en detalle la trayectoria parabólica y practicar con funciones trigonométricas seno, coseno y tangente.

 

Se dispara un proyectil desde una cierta altura sobre el suelo

Se dispara un proyectil desde una altura h sobre un plano horizontal con velocidad inicial v0, haciendo un ángulo θ con la horizontal. Para describir el movimiento establecemos un sistema de referencia como se indica en la figura.

Las componentes de la velocidad del proyectil en función del tiempo son:

vx=v0·cosθ

vy=v0·senθ-g·t

La posición del proyectil en función del tiempo es

x= v0·cosθ·t

y= h+v0·senθ·t-g·t2/2

Estas son las ecuaciones paramétricas de la trayectoria, ya que dado el tiempo t, se obtiene la posición x e y del proyectil.

El tiempo de vuelo T se obtiene poniendo y=0 en la segunda ecuación y despejando el tiempo t.

El proyectil llega al punto de impacto en el instante t=T. Sustituyendo t en la primera ecuación obtenemos el alcance, o distancia horizontal entre el origen y el punto de impacto, R.

En la figura, se representa el alcance R en función del ángulo de tiro θ.


clubbarcelona89: nadiee me da la respuesta correcta
haroldcataneda: esa es la correcta
Otras preguntas