Una bala de cañón Se dispara horizontalmente con una velocidad inicial de 120 m/s y un ángulo de elevación de 35 sobre la horizontal
Respuestas a la pregunta
Respuesta:
Explicación:
Los datos del problema son:
Vx = 120 m/s
Voy = 0 (la bala sale horizontalmente)
Yo = 250 m
tc = ?
Xmax = ?
V = ? Velocidad con que impacta en el agua
a) Tomemos como punto de referencia el suelo, justo el instante en que se suelta la
esfera.
Por Cinemática del Tiro Parabólico sabemos:
Y = Yo + Voy*t - ½ gt^2
Cuando y = 0 ----- t = tc
0 = 250 + 0 - ½ (9.8)(tc)^2
0 = 250 -4,9*tc^2
tc^2 = 51,02
tc = 7,14 s Este es el tiempo que tarda la bala en llegar al agua.
b) La bala sale horizontalmente a 120 m/s , la velocidad en el eje x en el movimiento
parabólico es constante durante toda la trayectoria.
X = Vx*t
Cuando t = tc ---------- x = Xmax
Xmax = Vx*tc
Xmax = 120 m/s * 7,14s
Xmax = 857,14 m
c) Por Cinemática del movimiento parabólico sabemos:
Vy = Voy*t – gt
Para t= 7,14s Vy = 0 -(9,8)(7,14)
Vy = -69,97m/s el signo “-“ significa que la velocidad
tienen sentido vertical hacia abajo Además por lo dicho en b) sabemos que Vx = 120m/s
Vx
β
Vy V
La velocidad en a los 5 segundos es
= í(
2 +
2
)
= í (1202 + (−69,97)
2
)
= 138,9
=
= −
69,97
120
= -0,5831
β = -30,25º
El alcance máximo es 1.381,22m. Altura máxima: 648,73m y su tiempo máximo de vuelo 14,05 seg
Explicación:
Completando el enunciado
a) su alcance máximo
b)su altura máxima y
c) su tiempo máximo de vuelo
Datos:
Vo= 120 m/seg
α = 35º
a) Alcance máximo :
x = Vo²* sen2α/g
x = ( 120m/seg)²* sen( 70º)/9,8m/seg²
x = 1.381,22m
b) Altura máxima:
hmax = Vo²* sen2α²/2g
hmax = ( 120m/seg )²*sen70º² /(2*9,8m/seg² )
hmax = 648,73m
c) su tiempo máximo de vuelo
t = 2*Vo*senα/g
t = 2*120 m/seg *sen35º /9,8m/seg²
t= 14,05 seg
Ve mas en : https://brainly.lat/tarea/11546326