UN TRONCO DE CONO INSCRITO EN UN CILINDRO, DETERMINAR LA RELACION DE LOS RADIOS DE LAS BASES DEL TRONCO DE CONO PARA QUE EL VOLUMEN DE DICHO TRONCO SE LA MITAD DEL VOLUMEN DEL CILINDRO
skypirata:
hahahhaha
Respuestas a la pregunta
Contestado por
13
Volumen del tronco de cono = (1/3)•π•h•(R² + r²
+ R•r)
Volumen del cilindro = π•r²•h
La expresión que he de escribir debe indicar que el volumen del tronco de cono debe ser la mitad que el volumen del cilindro y será así:
(1/3)•π•h•(R² + r² + R•r) = π•R²•h / 2
... siendo "R" el radio mayor del tronco de cono que coincidirá con el radio del cilindro y de aquí debo empezar a eliminar cosas a ver a dónde llego...
De momento, en los dos lados del signo "=" tengo "π•h" así que eso desaparece y queda:
R² + r² + R•r R²
—————— = — ... multiplicando en cruz...
3 2
2R² +2r² +2R•r = 3R² -------> 2r² +2R•r = R² ...factor común de "2r"...
2r•(r+R) = R²
R²
(r+R) = ———
2r
Y ya no puedo seguir. Llegué hasta aquí pero no sé si es lo que pide el ejercicio.
Saludos.
Volumen del cilindro = π•r²•h
La expresión que he de escribir debe indicar que el volumen del tronco de cono debe ser la mitad que el volumen del cilindro y será así:
(1/3)•π•h•(R² + r² + R•r) = π•R²•h / 2
... siendo "R" el radio mayor del tronco de cono que coincidirá con el radio del cilindro y de aquí debo empezar a eliminar cosas a ver a dónde llego...
De momento, en los dos lados del signo "=" tengo "π•h" así que eso desaparece y queda:
R² + r² + R•r R²
—————— = — ... multiplicando en cruz...
3 2
2R² +2r² +2R•r = 3R² -------> 2r² +2R•r = R² ...factor común de "2r"...
2r•(r+R) = R²
R²
(r+R) = ———
2r
Y ya no puedo seguir. Llegué hasta aquí pero no sé si es lo que pide el ejercicio.
Saludos.
Otras preguntas
Matemáticas,
hace 8 meses
Ciencias Sociales,
hace 8 meses
Historia,
hace 1 año
Química,
hace 1 año
Física,
hace 1 año
Historia,
hace 1 año