Física, pregunta formulada por matthewg3x, hace 1 año

Un saco de cemento de 325N de peso cuelga de 3 cable unidos. Dos de los cables forman ángulos de 01=60° y 02=25° con la horizontal. Si el sistema se encuentra en equilibrio, calcular las tensiones de los cables T1, T2, T3.
Realizar los diagramas de cuerpo libre y plantear las ecuaciones con la condición de equilibrio.

Respuestas a la pregunta

Contestado por Noee4
3

Realizando el diagrama de cuerpo libre de las tensiones T1 y T2 y escribiendo las ecuaciones:

∑Fx: T2*cos(25°) - T1*cos(60°) = 0

∑Fy: T1*sen(60°) + T2*sen(25°) - T3 = 0

Diagrama de cuerpo libre del bloque:

T3 - Wbloque = 0 

T3 = Wbloque 

T3 = 325 N ⇒ tensión #3

De la ecuación de ∑Fx:

T1 * cos(60°) = T2 * cos(25°)

T1 = T2 * [ cos(25°) / cos(60°) ]

T1 = 1,81*T2

Sustituyendo en ∑Fy:

1,81*T2*sen(60°) + T2*sen(25°) - 325 N = 0

T2 [ 1,81 * sen(60°) + sen(25°) ] = 325 N

T2 = 325 N / 2

T2 = 162,5 N ⇒ tensión #2

T1 = (1,81)*(162,5 N)

T1 = 294,13 N ⇒ tensión #1

Otras preguntas