Un proyectil es lanzado desde el suelo con un ángulo de inclinación de 39°, si se conoce que el tiempo que tarda en caer al suelo es de 45s. Determine la altura máxima a la que llega el proyectil.
Respuestas a la pregunta
El proyectil lanzado desde el suelo con movimiento parabólico tiene una altura máxima de 2480,38 m
Las formulas del movimiento parabólico que utilizaremos para resolver este ejercicio son:
- tv = (2* vi * senθ)/g
- h max = [vi² * (senθ)²] / (2*g)
Donde:
- tv = tiempo de vuelo
- h max = altura máxima
- g = gravedad
- vi = velocidad inicial
Datos del problema:
- θ= 39 °
- g = 9,8 m/s²
- tv = 45 s
- h max = ?
- vi = ?
Despejando la velocidad inicial de la formula de tiempo de vuelo tenemos:
tv = (2* vi * senθ)/g
vi = (tv * g) / (2*senθ)
vi = (45 s * 9,8 m/s²) / (2 * sen39°)
vi = (441 m/s) / (2 * 0,6293)
vi = (441 m/s) / (1,2586)
vi = 350, 38 m/s
Aplicando la formula de altura máxima tenemos que:
h max = [vi² * (senθ)²] / (2*g)
h max = [(350,38 m/s)² * (sen39°)²] / (2*9,8 m/s²)
h max = [122766,14 m²/s² * 0,3960] / (19,6 m/s²)
h max = 48615,39 m²/s² / 19,6 m/s²
h max = 2480,38 m
¿Qué es el movimiento parabólico?
Se puede decir que es aquel movimiento cuya trayectoria describe una parábola teniendo una componente de movimiento horizontal y una vertical.
Aprende mas sobre movimiento parabólico en: brainly.lat/tarea/8505650 y brainly.lat/tarea/33969264
#SPJ1