Matemáticas, pregunta formulada por miluska2497, hace 1 año

Un pastor cuida una manada, que no
pasa de 777 ovejas y no es inferior a 707; si las ovejas
se agrupan de 2 en 2, sobra una; lo mismo pasa si se
agrupan de 3 en 3, de 4 en 4, de 5 en 5; o de 6 en
6. Pero si se agrupan de 7 en 7, no sobra ninguna.
¿Cuántas ovejas forman la manada?​

Respuestas a la pregunta

Contestado por rociohaydee18
2

Respuesta:

721

Explicación paso a paso:

El número de ovejas, menos 1, es de la forma

                                                          7ab

que por la información aportada, es divisible por 2, 3, 4, 5 y 6.

Para que sea simultaneamente divisible por 2 y 5, obliga a que el último dígito sea cero, es decir será así

                                     7a0

Para ser divisible por 3

                                     7+a=3k  (1)

el valor de a está entre 0 y 7, solamente los valores  de a, 2 y 5 satisfacen (1)

Para ser divisible por 4, el valor formado por sus dos últimas cifras, debe ser múltiplo de 4, con las dos posibles soluciones para a 2 y 5, vemos que solamente 20 es múltiplo de 4, por tanto el número de ovejas menos 1 es

                                            720

y evidentemente las ovejas son

                                                 721

que efectivamente es múltiplo de 7.

Contestado por sofibignante
0

Respuesta:

721

Explicación paso a paso:

tienes que buscar el mínimo común múltiplo entre 2,3,4,5,6 y que este entre 707 y 777.

Este numero es 720

después tienes que sumarle 1 (que representa la oveja sobrante en las 5 primeras agrupaciones)  

te da 721 que dividido por 7 es igual a un numero exacto osea que no sobra ninguna

Entonces la majada tiene 721 ovejas

solo el 721 cumple la condición de que al dividir entre 2, entre 3, entre 4, entre 5 y entre 6 sobra uno

Otras preguntas