Un padre con sus seis hijos plantan árboles en el perímetro de un terreno triangular cuyos lados son 150m, 225m y 360m ¿Cuántos árboles como mínimo habrán sembrado cada uno, si la distancia entre cada árbol es la misma y todos sembraron la misma cantidad de árboles?
Respuestas a la pregunta
El padre y sus seis hijos debieron plantar siete (7) árboles cada uno, en el terreno triangular para un total de 49 árboles en el perímetro, todos a la misma distancia entre sí.
Justificación:
Para saber cuántos árboles plantar en el perímetro, con la condición que la distancia entre ellos sea la misma, es necesario saber el Máximo Común Divisor de cada uno de los lados del triángulo.
Para ello buscamos los factores primos de cada uno y luego tomamos los factores comunes con su menor exponente y los multiplicamos. Obtendremos así el menor valor que los divide en forma exacta a todos.
M.C.D.:
150 = 2 × 3 × 5²
225 = 3² × 5²
360 = 2³ × 3² × 5
M.C.D. = 3 × 5
M.C.D. = 15
Para saber la cantidad de árboles a plantar, sumamos los lados y dividimos entre 15
150 + 225 + 360 = 735 m de perímetro
735 ÷ 15 = 49 árboles en total
Como el padre y los 6 hijos suman 7, basta dividir el total de árboles sembrados a una distancia de 15 metros cada uno entre los 7 chicos para saber cuántos sembró cada uno
49 ÷ 7 = 7 árboles sembró cada uno.
Respuesta
7 arboles
dame coronita