un negocio vende n lamparas< 65 a un precio de (10-0,02)dolares cada una¿cuantas lámparas deben venderse para tener un ingreso de $450? Ayuda!!! Porfa
Respuestas a la pregunta
Para resolver este podemos seguir el siguiente procedimiento:
El negocio vende n lámparas (siendo n ≤ 65), a un precio de (10 - 0,02n) cada una.
Para saber cuantas lamparas deben vender para obtener $450 como ingreso, debemos entender que el ingreso estará dado por el numero de lamparas vendidas por su precio de venta, es decir:
Ingresos = Producto vendido × Precio de venta
Siendo así, nuestra expresión basada en la información del enunciado quedaría de la siguiente manera...
450 = n × (10 - 0,02n)
Ahora simplemente operaremos y trataremos de despejar n para hallar su valor:
450 = 10n - 0,02n²
Lo que es igual a 0,02n² - 10n + 450 = 0
Como se trata de una ecuación de segundo grado, para hallar el valor de n debemos utilizar la fórmula cuadrática que nos plantea lo siguiente:
Sustituyendo en la fórmula cuadrática los valores de nuestra expresión tenemos....
ó
n = 450 ó n = 50
Como el enunciando nos dice que el negocio vende n lámparas, siendo n ≤ 65, entonces la respuesta correcta es "Deben venderse 50 lámparas para obtener un ingreso de $450"
Espero que sea de ayuda!