Estadística y Cálculo, pregunta formulada por andres0139, hace 1 año

Un médico quiere optimizar su asignación de citas. Registra el tiempo que tarda con cada paciente durante una semana. La muestra de 40 pacientes da como resultado un tiempo medio de 35 minutos. Se sabe que la desviación estándar población es de 10 minutos. Construya una estimación por intervalo con el 98% de confianza para el tiempo medio que tarda por paciente, respecto a la totalidad de sus usuarios.

Respuestas a la pregunta

Contestado por mariatrilleras
0

El trabajo presenta a la simulación de Monte Carlo como técnica cuantitativa que hace uso de la estadística y cuáles son los procesos en los ordenadores para imitar, mediante modelos matemáticos, el comportamiento aleatorio de sistemas reales no dinámicos. Concretamente haciendo uso de la planilla de cálculo de Microsoft Excel, se describe cómo es posible obtener un número pseudo-aleatorio -proveniente de una distribución uniforme entre el 0 y el 1- usando la función ALEATORIO. Avanzando en ejemplos mas complejos se construyen modelos de simulación Monte Carlo cuando las variables aleatorias son discretas o continuas.

Palabras Clave: simulación, Monte Carlo, comportamiento aleatorio o probabilístico, número pseudo-aleatorio.

1.- Introducción

La simulación de Monte Carlo es una técnica que combina conceptos estadísticos (muestreo aleatorio) con la capacidad que tienen los ordenadores para generar números pseudo-aleatorios y automatizar cálculos.

Los orígenes de esta técnica están ligados al trabajo desarrollado por Stan Ulam y John Von Neumann a finales de los 40 en el laboratorio de Los Alamos, cuando investigaban el movimiento aleatorio de los neutrones [W1]. En años posteriores, la simulación de Monte Carlo se ha venido aplicando a una infinidad de ámbitos como alternativa a los modelos matemáticos exactos o incluso como único medio de estimar soluciones para problemas complejos. Así, en la actualidad es posible encontrar modelos que hacen uso de simulación Monte Carlo en las áreas informática, empresarial, económica, industrial e incluso social [5, 8]. En otras palabras, la simulación de Monte Carlo está presente en todos aquellos ámbitos en los que el comportamiento aleatorio o probabilístico desempeña un papel fundamental -precisamente, el nombre de Monte Carlo proviene de la famosa ciudad de Mónaco, donde abundan los casinos de juego y donde el azar, la probabilidad y el comportamiento aleatorio conforman todo un estilo de vida.

Son muchos los autores que han apostado por utilizar hojas de cálculo para realizar simulación Monte Carlo [1, 6, 7]. La potencia de las hojas de cálculo reside en su universalidad, en su facilidad de uso, en su capacidad para recalcular valores y, sobre todo, en las posibilidades que ofrece con respecto al análisis de escenarios (“what-if anaylisis”). Las últimas versiones de Excel incorporan, además, un lenguaje de programación propio, el Visual Basic for Applications, con el cual es posible crear auténticas aplicaciones de simulación destinadas al usuario final. En el mercado existen de hecho varios complementos de Excel (Add-Ins) específicamente diseñados para realizar simulación Monte Carlo, siendo los más conocidos: @Risk, Crystall Ball, Insight.xla, SimTools.xla, etc. [W2 – W5].

Conceptos fundamentales

La función ALEATORIO() de Excel

Las hojas de cálculo como Excel (y cualquier lenguaje de programación estándar) son capaces de generar números pseudo-aleatorios provenientes de una distribución uniforme entre el 0 y el 1. Este tipo de números pseudo-aleatorios son los elementos básicos a partir de los cuales se desarrolla cualquier simulación por ordenador. En Excel, es posible obtener un número pseudo-aleatorio -proveniente de una distribución uniforme entre el 0 y el 1- usando la función ALEATORIO:

Otras preguntas