Exámenes Nacionales, pregunta formulada por Chapigordis6570, hace 1 mes

Un local ""A"" de venta de artículos para celular paga a sus vendedores $10. 00 pesos por artículo vendido más una cantidad fija de $500. 00 pesos. El local ""B"" de la competencia paga $15. 00 pesos por artículo y $300. 00 pesos fijos. ¿Cuántos artículos debe vender un empleado del local ""B"" para ganar más dinero que el primero?.

Respuestas a la pregunta

Contestado por luismgalli
0

La cantidad artículos debe vender un empleado del local ""B"" para ganar más dinero que el primero es: más de 40.

¿Qué es una Expresión algebraica?

Es el enunciado matemático que indica a través de relacionar números, variables y operaciones matemáticas, tales como suma, resta, multiplicación, división y exponencial un conjunto de datos, cuando la expresión tiene involucrado el signo de igualdad (=) se dice que es una ecuación.

La expresión algebraica de lo que ganan unos vendedores de celulares  en cada uno de sus locales es:

Local A:

y = 10x +500

Local B:

y = 15x +300

La cantidad artículos debe vender un empleado del local ""B"" para ganar más dinero que el primero es:

10x +500 = 15x+300

500-300 = 15-10x

200 = 5x

x = 40 artículos

Con 40 artículos ganan igual con más de 40 B gana más que A.

Si quiere conocer más de expresión algebraica vea: https://brainly.lat/tarea/973250

Adjuntos:
Otras preguntas