Física, pregunta formulada por jesusvaldivieso2004, hace 3 meses

Un golfista realiza un tiro con un angulo de 30 grados a una velodidad de 40 m/s. Calcula la distancia que recorre antes de volver a tocar el cesped (alcance horizontal máximo).

Respuestas a la pregunta

Contestado por arkyta
6

El alcance horizontal máximo del proyectil es de 138.56 metros, recorriendo esa distancia antes de volver a tocar el césped

Se trata de un problema de tiro parabólico que consiste en una composición de movimientos en dos dimensiones: uno horizontal sin aceleración, y el otro vertical con aceleración constante hacia abajo, debido a la fuerza de la gravedad. Ambos movimientos poseen velocidad inicial y son independientes uno del otro.

Solución  

Hallamos el alcance máximo

La ecuación de alcance máximo de un proyectil está dada por:

\large\boxed {\bold  {  x_{max}  =\frac{( V _{0})^{2}  \ . \ sen (2 \theta)   }{ g  }         }}

Donde

\bold  { x_{max} }  \ \ \ \    \textsf{Es el alcance m\'aximo del proyectil  }

\bold  { V_{0}}  \ \ \ \  \ \  \textsf{ Es la velocidad  inicial }

\bold  { \theta } \ \ \ \ \ \ \ \ \    \textsf{Es el \'angulo de lanzamiento del proyectil  }

\bold  { g }  \ \ \ \ \  \ \ \ \    \textsf{Es la gravedad  }

\bold \ \textsf{Considerando el valor de   la gravedad  } \bold  {10 \ \frac{m}{s^{2} }  }

\large \textsf{Reemplazamos y resolvemos  }

\boxed {\bold  {  x_{max}  =\frac{ (40 \ \frac{m}{s} )^{2} \ . \ sen (2 \ 30 ^o)   }{  10 \ \frac{m}{s^{2} } }         }}

\boxed {\bold  {  x_{max}  =\frac{1600\ \frac{m^{\not2}  }{\not s^{2}}  \ . \ sen (60 ^o)   }{  10 \ \frac{\not m}{\not s^{2} } }         }}

\large \textsf{El valor exacto de sen de 60 grados es de  }\bold{ \frac{\sqrt{3} }{2} }

\boxed {\bold {  x_{max}  =\frac{1600\   \ . \ \frac{\sqrt{3} }{2}   }{  10  } \ m         }}

\boxed {\bold {  x_{max}  =\frac{\not2 \ . \ 800\   \ . \ \frac{\sqrt{3} }{\not2}   }{ 10  } \ m         }}

\boxed {\bold {  x_{max}  =\frac{ 800\   \ . \  \sqrt{3}   }{ 10  } \ m         }}

\boxed {\bold {  x_{max}  =\frac{ \not 10 \ . \ 80\   \ . \  \sqrt{3}   }{\not 10  } \ m         }}

\large\boxed {\bold {  x_{max}  =80\sqrt{3}  \  m         }}

\large\boxed {\bold {  x_{max}  =138.56 \ metros         }}

El alcance horizontal máximo del proyectil es de 138.56 metros

Aunque el enunciado no lo pida

Hallamos el tiempo de vuelo

La ecuación del tiempo de vuelo de un proyectil está dada por:

\large\boxed {\bold  {  t_{V}  =\frac{2 \  V _{0}  \ . \ sen \  \theta   }{ g  }         }}

Donde

\bold  { t_{v} }  \ \ \ \ \   \ \ \   \textsf{Es el tiempo de vuelo del proyectil  }

\bold  { V_{0}}  \ \ \ \  \ \  \textsf{ Es la velocidad  inicial }

\bold  { \theta } \ \ \ \ \ \ \ \ \    \textsf{Es el \'angulo de lanzamiento del proyectil  }

\bold  { g }  \ \ \ \ \  \ \ \ \    \textsf{Es la gravedad  }

\large \textsf{Reemplazamos y resolvemos  }

\boxed {\bold  { t _{v}  =\frac{2 \ . \ (40 \ \frac{m}{s} ) \ . \ sen  \ (30^o)  }{10 \ \frac{m}{s^{2} }  }         }}

\large \textsf{El valor exacto de sen de 30  grados es de  }\bold{ \frac{1}{2} }

\boxed {\bold  { t _{v}  =\frac{80\ \frac{\not m}{\not s}  \ . \ \frac{1}{2}  }{10 \ \frac{\not m}{s^{\not 2} }  }         }}

\boxed {\bold  { t _{v}  =\frac{80\   \ . \ \frac{1}{2}  }{10   }    \ segundos     }}

\boxed {\bold  { t _{v}  =\frac{ \frac{80}{2}  }{10   }    \ segundos     }}

\boxed {\bold  { t _{v}  =\frac{40 }{10    }    \ segundos     }}

\large\boxed {\bold  { t _{v}  =4  \ segundos     }}

El tiempo de vuelo del proyectil es de 4 segundos

Determinamos la altura máxima

La altura máxima que alcanza un proyectil está dada por:

\large\boxed {\bold  {  H_{max}  =\frac{( V_{0})^{2} \ . \ sen^{2} \theta   }{2 \ . \ g  }         }}

Donde

\bold  { H_{max} }  \ \ \ \    \textsf{Es la altura m\'axima del proyectil  }

\bold  { V_{0}}  \ \ \ \    \ \ \  \textsf{ Es la velocidad  inicial }

\bold  { \theta }  \ \ \ \ \  \   \   \ \ \  \textsf{Es el \'angulo de lanzamiento del proyectil  }

\bold  { g }  \ \ \ \ \  \ \ \ \  \    \textsf{Es la gravedad  }

\large \textsf{Reemplazamos y resolvemos  }

\boxed {\bold  {  H_{max}  =\frac{(40 \ \frac{m}{s} )^{2} \ . \ sen^{2} \ (30^o)  }{2 \ . \ 10 \ \frac{m}{s^{2} }  }         }}

\large \textsf{El valor exacto de sen de 30  grados es de  }\bold{ \frac{1}{2} }

\boxed {\bold  {  H_{max}  =\frac{1600\ \frac{m^{2}  }{ s^{2} }  \ .  \ \left(\frac{1}{2}\right )^{2}   }{ 20\  \frac{m}{\not s^{2} }  }         }}

\boxed {\bold  {  H_{max}  =\frac{1600\ \frac{m^{\not 2}  }{\not  s^{2} }  \ .  \ \frac{1}{4}  }{ 20\  \frac{\not m}{\not s^{2} }  }         }}

\boxed {\bold  {  H_{max}  =\frac{1600\  \ .  \ \frac{1}{4}  }{ 20\    }  \ m        }}

\boxed {\bold  {  H_{max}  =\frac{ \frac{1600}{4}  }{ 20\    }  \ m        }}

\boxed {\bold  {  H_{max}  =\frac{ 400 }{20\    }  \ m        }}

\large\boxed {\bold  {  H_{max}  = Y_{max}  =   20\ metros          }}

La altura máxima que alcanza el proyectil es de 20 metros

Se adjunta gráfico que evidencia la trayectoria del movimiento

Adjuntos:
Otras preguntas