Física, pregunta formulada por Mirnis76, hace 1 año

Un globo electrostáticamente cargado ejerce una fuerza de atracción sobre un papel de tal forma que se pueden identificar dos cargas positivas en la periferia del globo y una negativa en la periferia del papel. Las cargas del globo y del papel están colocadas en los vértices de un triángulo equilátero cuyos lados tienen una longitud de 5 cm, tal como se muestra en la figura. Se sabe que la carga q1 tiene polaridad negativa con un valor de 20 μC (microcoulomb), la carga q2 tiene polaridad positiva con una magnitud de 10 μC y la carga q3 también tiene polaridad positiva con una intensidad de 30 μC.Calcula la fuerza de q3 sobre q1. Para ello, hay que sustituir los valores de las respectivas cargas en la ecuación de la ley de Coulomb y el valor de la distancia d , la cual corresponde a la separación entre q1 y q3. realiza el cálculo de la fuerza de q2 sobre q1. Utiliza el plano cartesiano para graficar los resultados de las fuerzas solicitadas. Calcula la fuerza resultante FR. Utiliza el plano cartesiano para graficar el resultado de los componentes x y y.

Respuestas a la pregunta

Contestado por Osm867
1

La fuerza es (0.252, 0.06235) N.


Explicación.


Para resolver este problema hay que aplicar el principio de superposición de fuerzas, el cual es el siguiente:


Ft = F1 + F2


Cada fuerza se calcula como:


F =  k*q1*q2/d² * (u)


Para F1 se tiene que los datos son los siguientes:


k = 9 x 10⁹ N*m²/C²

q1 = -20 μC = -20 x 10⁻⁶ C

q2 = 10 μC = 10 x 10⁻⁶ C

d = 5 cm = 0.05 m

u = (-0.025, -0.0433)/0.05 = (-0.5, -0.866)


Sustituyendo los datos en la ecuación se tiene que:


F1 = (9 x 10⁹)*(-20 x 10⁻⁶)*(10 x 10⁻⁶)/5² * (-0.5, -0.866)

F1 = (0.036, 0.06235) N


Para F2 se tiene que:


k = 9 x 10⁹ N*m²/C²

q1 = -20 μC = -20 x 10⁻⁶ C

q3 = 30 μC = 30 x 10⁻⁶ C

d = 5 cm = 0.05 m

u = (-1, 0)


Sustituyendo:


F2 = (9 x 10⁹)*(-20 x 10⁻⁶)*(30 x 10⁻⁶)/5² * (-1, 0)

F2 = (0.216, 0) N


Finalmente la fuerza resultante es la siguiente:


Ft = (0.036, 0.06235) + (0.216, 0)

Ft = (0.252, 0.06235) N

Adjuntos:
Otras preguntas