Física, pregunta formulada por erikaelizabethbenite, hace 8 meses

un cuerpo es lanzado desde el suelo hacia arriba permaneciendo en el aire 14 segundos. Averigua la velocidad con que fue lanzado considera gravedad 10 m/s considera gravedad de 10 m/S2​

Respuestas a la pregunta

Contestado por arkyta
20

La velocidad inicial o velocidad de lanzamiento del cuerpo fue de 70 m/s

 

Se trata de un problema de tiro vertical

En el tiro vertical un objeto es lanzado verticalmente con determinada velocidad inicial hacia arriba o hacia abajo

Se trata de un movimiento rectilíneo uniformemente variado (MRUV) o movimiento rectilíneo uniformemente acelerado (MRUA) en el que la aceleración coincide con el valor de la gravedad.

La aceleración de la gravedad se puede considerar constante y dirigida hacia abajo.

Si se establece un sistema de referencia en el plano cartesiano el objeto se encuentra sobre el eje y, donde \bold  { y_{0}  = 0      }

Y donde el cuerpo parte con determinada velocidad inicial, siendo su aceleración constante y esta toma el valor de la gravedad.

\large\textsf{Donde se pueden tener dos casos seg\'un el sistema de referencia  }

\large\textsf{Tiro vertical hacia arriba  } \bold  { \ donde  \ la \ velocidad \ inicial\  V_{0}  > 0 }

Siendo las ecuaciones

\boxed {\bold { y = H \ + \ V_{0} \ .  \ t \ -\frac{1}{2}  \ g \ . \ t^{2}  }}

\boxed {\bold {V_{y}   \ = \ V_{0}  \ - \ g \ . \ t }}

\textsf{ Donde} \ \ { \bold  { a=  g   } \   \textsf{ y es siempre constante}    }

\large\textsf{Tiro vertical hacia abajo  } \bold  {  donde  \ la \ velocidad \ inicial\ \  V_{0}  < 0 }

Siendo las ecuaciones

\boxed {\bold { y = H \ -\ V_{0} \ .  \ t \ -\frac{1}{2}  \ g \ . \ t^{2}  }}

\boxed {\bold {V_{y}   \ = \ -V_{0}  \ - \ g \ . \ t }}

\textsf{ Donde} \ \ { \bold  { a=  g   } \   \textsf{ y es siempre constante}    }

Solución

\large\textsf{Se tiene un tiro vertical hacia arriba  }

Donde

Si el tiempo de vuelo o de permanencia en el aire del cuerpo es de 14 segundos, esto implica que demoró 7 segundos en alcanzar la altura máxima

\bold  { V_{f}  = 0     }

En otras palabras si el cuerpo regresa al punto de partida al cabo de 14 segundos, ello implica que tardó 7 segundos en alcanzar la altura máxima

 

Donde se toma por imposición de enunciado

\bold  { g=  \ 10 \ m/ s^{2} } \ \   \textsf{Valor de la gravedad    }

\boxed {\bold {V_{y}   \ = \ V_{0}  \ - \ g \ . \ t }}

\boxed {\bold {V_{f}   \ = \ V_{0}  \ - \ g \ . \ t }}

\boxed {\bold {0 \ = \ V_{0}  \ - \ g \ . \ t }}

\boxed {\bold { -V_{0} = \ - \ g \ . \ t }}

\boxed {\bold { V_{0} = \  \left(10 \  \frac{m}{s^{\not2} }\right  ) \ . \  (7  \not s) }}

\large\boxed {\bold {V_{0}   \ = \ 70\ \frac{m}{s}       }}

La velocidad inicial o velocidad de lanzamiento del cuerpo fue de 70 m/s

Otras preguntas