Un cuerpo cae del reposo desde una altura de 50m calcular. a) cuanto tiempo demora en caer. b) cuando llego al piso cual es su velocidad
Respuestas a la pregunta
Respuesta:
Cuando alcanza la altura máxima, la velocidad del móvil es cero. De la ecuación de la velocidad, se obtiene el tiempo que transcurre desde que se lanza hasta que llega a dicha posición. El tiempo transcurrido se sustituye en la ecuación de la posición, obteniéndose la máxima altura que alcanza el móvil medida desde el suelo.
t=v0g  x=x0+12v02g" role="presentation" style="display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 26.04px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">t=v0gx=x0+12v20gt=v0g x=x0+12v02g
El tiempo que tarda en llegar al suelo, se obtiene a partir de la ecuación de la posición, poniendo x=0, resolviendo una ecuación de segundo grado.
x0+v0t−12gt2=0" role="presentation" style="display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 26.04px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">x0+v0t−12gt2=0x0+v0t−12gt2=0
Nota: como podrá comprobar el lector, la solución del problema es independiente de la situación del origen. Si colocamos el origen en el punto de lanzamiento, la posición inicial x0 es cero, pero el suelo se encuentra en la posición -x0 respecto de dicho origen, resultando la misma ecuación. La altura máxima se calcula ahora desde el techo del edificio, no desde el origen.
Problema